Graph coloring: Theory and Application

Ana Silva

(anasilva@mat.ufc.br)

ParGO – Paralelismo, Grafos e Otimização Departamento de Matemática Universidade Federal do Ceará

Outline

- Basic definitions
- Some upper bounds
- 3 Some lower bounds
- 4 Coloring planar graphs
- Coloring edges
- **6** Concluding remarks

Basic definitions

Graph Coloring

- Assign frequencies to radio antennas;
- Proximity causes noise;
- Hence, close antennas must get distinct frequencies.

Graph Coloring

- Assign frequencies to radio antennas;
- Proximity causes noise;
- Hence, close antennas must get distinct frequencies.

Graph Coloring

- Assign frequencies to radio antennas;
- Proximity causes noise;
- Hence, close antennas must get distinct frequencies.

Graph

- Pair (V, E) of vertices and edges;
- ullet E is a set of subsets of V of size 2;
- We write $uv \in E(G)$, and say that u, v are adjacent or neighbors.

Graph

- Pair (V, E) of vertices and edges;
- *E* is a set of subsets of *V* of size 2;
- We write $uv \in E(G)$, and say that u, v are adjacent or neighbors.

Graph

- Pair (V, E) of vertices and edges;
- ullet E is a set of subsets of V of size 2;
- We write $uv \in E(G)$, and say that u, v are adjacent or neighbors.

Proper coloring

- $f: V(G) \rightarrow [k]$ s.t. $f(u) \neq f(v)$ for every edge $uv \in E(G)$;
- χ(G) = min k for which G admits a k-coloring;
- Given G and $k \in \mathbb{N}$, decide $\chi(G) \leq k$.

Proper k-coloring

- $f: V(G) \rightarrow [k]$ s.t. $f(u) \neq f(v)$ for every edge $uv \in E(G)$;
- χ(G) = min k for which G admits a k-coloring;
- Given G and $k \in \mathbb{N}$, decide $\chi(G) \leq k$.

Chromatic number

- $f: V(G) \rightarrow [k]$ s.t. $f(u) \neq f(v)$ for every edge $uv \in E(G)$;
- χ(G) = min k for which G admits a k-coloring;
- Given G and $k \in \mathbb{N}$, decide $\chi(G) \leq k$.

Decision problem

- $f: V(G) \rightarrow [k]$ s.t. $f(u) \neq f(v)$ for every edge $uv \in E(G)$;
- χ(G) = min k for which G admits a k-coloring;
- Given G and $k \in \mathbb{N}$, decide $\chi(G) \leq k$.

Partition into independent sets

Independent set

- Subset $S \subseteq V(G)$ s.t. $uv \notin E(G)$ for every $u, v \in S$;
- Partition S_1, \ldots, S_k s.t. each S_i is an independent set;
- Independent sets are also called stable sets.

Partition into independent sets

k-coloring

- Subset $S \subseteq V(G)$ s.t. $uv \notin E(G)$ for every $u, v \in S$;
- Partition S_1, \ldots, S_k s.t. each S_i is an independent set;
- Independent sets are also called stable sets.

Partition into independent sets

Stable sets

- Subset $S \subseteq V(G)$ s.t. $uv \notin E(G)$ for every $u, v \in S$;
- Partition S_1, \ldots, S_k s.t. each S_i is an independent set;
- Independent sets are also called stable sets.

One of the Karp's 21 Problems

- NP-complete, even if k is fixed, $k \ge 3$;
- Para-NP-complete when parameterized by k;
- Impossible to approximate by a constant factor, unles P = NP.

Reducibility among Combinatorial Problems.

In R. E. Miller and J. W. Thatcher (editors). Complexity of Computer Computations. New York: Plenum. pp. 85–103, 1972.

One of the Karp's 21 Problems

- NP-complete, even if k is fixed, $k \ge 3$;
- Para-NP-complete when parameterized by k;
- Impossible to approximate by a constant factor, unles P = NP.

Reducibility among Combinatorial Problems.

In R. E. Miller and J. W. Thatcher (editors). Complexity of Computer Computations. New York: Plenum. pp. 85–103, 1972.

One of the Karp's 21 Problems

- NP-complete, even if k is fixed, $k \ge 3$;
- Para-NP-complete when parameterized by k;
- Impossible to approximate by a constant factor, unles P = NP.

On the hardness of approximating minimization problems.

J. of the ACM 41 (1994) 960-981.

Some upper bounds

Iterate on the order, giving smallest color not in $N(u_i)$ for each i.

Iterate on the order, giving smallest color not in $N(u_i)$ for each i.

Proposition

Let $\Delta(G)$ be the maximum degree of G. Then $\chi(G) \leq \Delta(G) + 1$.

- ullet For every $i \in \{1, \dots, n-1\}$, there exists j > i s.t. $u_i u_j$ is an edge; and
- u_1u_n , u_2u_n are edges, and u_1u_2 is not an edge.

- For every $i \in \{1, \dots, n-1\}$, there exists j > i s.t. $u_i u_j$ is an edge; and
- u_1u_n , u_2u_n are edges, and u_1u_2 is not an edge.

- ullet For every $i\in\{1,\ldots,n-1\}$, there exists j>i s.t. u_iu_j is an edge; and
- u_1u_n , u_2u_n are edges, and u_1u_2 is not an edge.

- ullet For every $i\in\{1,\ldots,n-1\}$, there exists j>i s.t. u_iu_j is an edge; and
- u_1u_n , u_2u_n are edges, and u_1u_2 is not an edge.

- ullet For every $i\in\{1,\ldots,n-1\}$, there exists j>i s.t. u_iu_j is an edge; and
- u_1u_n , u_2u_n are edges, and u_1u_2 is not an edge.

- ullet For every $i\in\{1,\ldots,n-1\}$, there exists j>i s.t. u_iu_j is an edge; and
- u_1u_n , u_2u_n are edges, and u_1u_2 is not an edge.

- ullet For every $i\in\{1,\ldots,n-1\}$, there exists j>i s.t. u_iu_j is an edge; and
- u_1u_n , u_2u_n are edges, and u_1u_2 is not an edge.

- For every $i \in \{1, ..., n-1\}$, there exists j > i s.t. $u_i u_j$ is an edge; and $\Rightarrow u_i$ has $\leq d(u_i) 1$ colored neighbors
- u_1u_n , u_2u_n are edges, and u_1u_2 is not an edge.

- For every $i \in \{1, ..., n-1\}$, there exists j > i s.t. $u_i u_j$ is an edge; and $\Rightarrow u_i$ has $\leq d(u_i) 1$ colored neighbors
- u_1u_n , u_2u_n are edges, and u_1u_2 is not an edge.
 - $\Rightarrow u_n$ has 2 neighbors of the same color

- For every $i \in \{1, ..., n-1\}$, there exists j > i s.t. $u_i u_j$ is an edge; and $\Rightarrow u_i$ has $\leq d(u_i) 1$ colored neighbors
- u_1u_n , u_2u_n are edges, and u_1u_2 is not an edge. $\Rightarrow u_n$ has 2 neighbors of the same color

Obtained coloring uses at most $\Delta(G)$ colors.

Proposition

If (u_1, \ldots, u_n) is an ordering s.t.:

- For every $i \in \{1, \ldots, n-1\}$, there exists j > i s.t. $u_i u_j$ is an edge; and
- u_1u_n , u_2u_n are edges, and u_1u_2 is not an edge,

then
$$\chi(G) \leq \Delta(G)$$
.

Theorem (Brooks, 1941)

Such an order exists iff G is neither an odd cycle, nor a complete graph.

Proposition

If (u_1, \ldots, u_n) is an ordering s.t.:

- For every $i \in \{1, ..., n-1\}$, there exists j > i s.t. $u_i u_j$ is an edge; and
- u_1u_n , u_2u_n are edges, and u_1u_2 is not an edge,

then $\chi(G) \leq \Delta(G)$.

Theorem (Brooks, 1941)

Such an order exists iff G is neither an odd cycle, nor a complete graph.

Proposition

If (u_1, \ldots, u_n) is an ordering s.t.:

- For every $i \in \{1, \ldots, n-1\}$, there exists j > i s.t. $u_i u_j$ is an edge; and
- u_1u_n , u_2u_n are edges, and u_1u_2 is not an edge,

then $\chi(G) \leq \Delta(G)$.

Theorem (Brooks, 1941)

Such an order exists iff G is neither an odd cycle, nor a complete graph. $\chi(G) = \Delta(G) + 1$ iff G is an odd cycle, or a complete graph.

(j) 2

Iteratively put in the beginning the vertex with smallest degree.

Order that produces a coloring with at most 4 colors.

Degeneracy (or coloring number)

(minimum degree $\delta(H)$ over all subgraphs H of G, plus 1.)

$$col(G) = 1 + \max_{H \subseteq G} \delta(H).$$

Theorem (Szekeres-Wilf, 1968)

$$\chi(G) \leq col(G)$$
.

Degeneracy (or coloring number)

(minimum degree $\delta(H)$ over all subgraphs H of G, plus 1.)

$$col(G) = 1 + \max_{H \subseteq G} \delta(H).$$

Theorem (Szekeres-Wilf, 1968)

$$\chi(G) \leq col(G)$$
.

Some lower bounds

Recall:

Independent set

- Subset $S \subseteq V(G)$ s.t. $uv \notin E(G)$ for every $u, v \in S$;
- Partition S_1, \ldots, S_k s.t. each S_i is an independent set; and

Recall:

k-coloring

- Subset $S \subseteq V(G)$ s.t. $uv \notin E(G)$ for every $u, v \in S$;
- Partition S_1, \ldots, S_k s.t. each S_i is an independent set; and

Recall:

k-coloring

- Subset $S \subseteq V(G)$ s.t. $uv \notin E(G)$ for every $u, v \in S$;
- Partition S_1, \ldots, S_k s.t. each S_i is an independent set; and

 $\theta(G) = \max |S|$ s.t. S is an independent set of G.

Recall:

k-coloring

- Subset $S \subseteq V(G)$ s.t. $uv \notin E(G)$ for every $u, v \in S$;
- Partition S_1, \ldots, S_k s.t. each S_i is an independent set; and

 $\theta(G) = \max |S|$ s.t. S is an independent set of G.

Proposition

For every graph G,

$$\chi(G) \geq \frac{|V(G)|}{\theta(G)}.$$

Clique

- Subset $S \subseteq V(G)$ s.t. $uv \in E(G)$ for every $u, v \in S$;
- Maximum size of a clique; denoted by $\omega(G)$.

Clique number

- Subset $S \subseteq V(G)$ s.t. $uv \in E(G)$ for every $u, v \in S$;
- Maximum size of a clique; denoted by $\omega(G)$.

Clique number

- Subset $S \subseteq V(G)$ s.t. $uv \in E(G)$ for every $u, v \in S$;
- Maximum size of a clique; denoted by $\omega(G)$.

Remark

$$\chi(G) \geq \omega(G)$$
.

Clique number

- Subset $S \subseteq V(G)$ s.t. $uv \in E(G)$ for every $u, v \in S$;
- Maximum size of a clique; denoted by $\omega(G)$.

Remark

$$\chi(G) \geq \omega(G)$$
.

Lower bound: clique number

Clique number

- Subset $S \subseteq V(G)$ s.t. $uv \in E(G)$ for every $u, v \in S$;
- Maximum size of a clique; denoted by $\omega(G)$.

Remark

$$\chi(G) \geq \omega(G)$$
.

Lower bound: clique number

Clique number

- Subset $S \subseteq V(G)$ s.t. $uv \in E(G)$ for every $u, v \in S$;
- Maximum size of a clique; denoted by $\omega(G)$.

Remark

$$\chi(G) \geq \omega(G)$$
.

Lower bound: clique number

Clique number

- Subset $S \subseteq V(G)$ s.t. $uv \in E(G)$ for every $u, v \in S$;
- Maximum size of a clique; denoted by $\omega(G)$.

Remark

$$\chi(G) \geq \omega(G)$$
.

Clique number can be arbitrarily smaller than $\chi(G)$.

Mycielskian of G

Proposition

Proposition

Proposition

Proposition

Proposition

If G has no triangles, then the Mycielskian of G also has no triangles.

Proposition

If $\chi(G) = k$, then $\chi(G') = k + 1$, where G' is the Mycielskian of G.

Proposition

If G has no triangles, then the Mycielskian of G also has no triangles.

Proposition

If $\chi(G) = k$, then $\chi(G') = k + 1$, where G' is the Mycielskian of G.

Proposition

If G has no triangles, then the Mycielskian of G also has no triangles.

Proposition

If $\chi(G) = k$, then $\chi(G') = k + 1$, where G' is the Mycielskian of G.

Corollary

For each integer $k \ge 2$, there exists G s.t. $\omega(G) = 2$ and $\chi(G) = k$.

Coloring planar graphs

Coloring a map

Coloring a map planar graph

Coloring a map planar graph

Coloring a map planar graph

Four color Theorem

Conjecture (Guthrie, 1852)

(Wrongfully credited to De Morgan)
Four colors are always enough to color a map.

Theorem (Appel and Haken, 1989)

Sure! (But to do it, we need computers!)

Four color Theorem

Conjecture (Guthrie, 1852)

(Wrongfully credited to De Morgan)
Four colors are always enough to color a map.

Theorem (Appel and Haken, 1989)

Sure! (But to do it, we need computers!)

Theorem (Kempe, 1879)

Six colors are always enough to color a map.

Theorem (Kempe, 1879)

Six colors are always enough to color a map.

Theorem (Kempe, 1879)

Six colors are always enough to color a map.

Suppose *G* triangulated.

Theorem (Kempe, 1879)

Six colors are always enough to color a map.

Suppose G triangulated. We get $\sum_{f} |f| = 3F = 2m$.

Theorem (Kempe, 1879)

Six colors are always enough to color a map.

Suppose G triangulated. We get $\sum_{f} |f| = 3F = 2m$. By Euler's Relation (n - m + F = 2), we then get:

$$6n - 6m + 6F = 6n - 6m + 4m = 6n - 2m = 12.$$

Theorem (Kempe, 1879)

Six colors are always enough to color a map.

Suppose G triangulated. We get $\sum_{f} |f| = 3F = 2m$. By Euler's Relation (n - m + F = 2), we then get:

$$6n - 6m + 6F = 6n - 6m + 4m = 6n - 2m = 12.$$

We also know that $2m = \sum_{v \in V(G)} d(v)$. Therefore:

Theorem (Kempe, 1879)

Six colors are always enough to color a map.

Suppose G triangulated. We get $\sum_{f} |f| = 3F = 2m$. By Euler's Relation (n - m + F = 2), we then get:

$$6n - 6m + 6F = 6n - 6m + 4m = 6n - 2m = 12.$$

We also know that $2m = \sum_{v \in V(G)} d(v)$. Therefore:

$$6n - \sum_{v \in V(G)} d(v) = \sum_{v \in V(G)} (6 - d(v)) = 12.$$

Four Six color theorem

Theorem (Kempe, 1879)

Six colors are always enough to color a map.

Suppose G triangulated. We get $\sum_{f} |f| = 3F = 2m$. By Euler's Relation (n - m + F = 2), we then get:

$$6n - 6m + 6F = 6n - 6m + 4m = 6n - 2m = 12.$$

We also know that $2m = \sum_{v \in V(G)} d(v)$. Therefore:

$$6n - \sum_{v \in V(G)} d(v) = \sum_{v \in V(G)} (6 - d(v)) = 12.$$

It follows that there exists $v \in V(G)$ such that d(v) < 6.

Four Six color theorem

Theorem (Kempe, 1879)

Six colors are always enough to color a map.

Suppose G triangulated. We get $\sum_{f} |f| = 3F = 2m$. By Euler's Relation (n - m + F = 2), we then get:

$$6n - 6m + 6F = 6n - 6m + 4m = 6n - 2m = 12.$$

We also know that $2m = \sum_{v \in V(G)} d(v)$. Therefore:

$$6n - \sum_{v \in V(G)} d(v) = \sum_{v \in V(G)} (6 - d(v)) = 12.$$

It follows that there exists $v \in V(G)$ such that d(v) < 6. In other words, G is 5-degenerate and hence can be colored with 6 colors.

Theorem (Heawood, 1891)

Five colors are always enough to color a map.

By induction on n = |V(G)|. If $n \le 5$, there is nothing to do. If there exists $u \in V(G)$ with d(u) < 5, then

- Apply induction on G u, obtaining f that uses at most 5 colors;
- Choose a color not appearing in N(u) with which to color u.
- Otherwise, choose $u \in V(G)$ s.t. d(u) = 5 (recall previous slide).

Theorem (Heawood, 1891)

Five colors are always enough to color a map.

By induction on n = |V(G)|. If $n \le 5$, there is nothing to do. If there exists $u \in V(G)$ with d(u) < 5, then

- Apply induction on G u, obtaining f that uses at most 5 colors;
- Choose a color not appearing in N(u) with which to color u.
- Otherwise, choose $u \in V(G)$ s.t. d(u) = 5 (recall previous slide).

Theorem (Heawood, 1891)

Five colors are always enough to color a map.

By induction on n = |V(G)|. If $n \le 5$, there is nothing to do.

If there exists $u \in V(G)$ with d(u) < 5, then

- Apply induction on G u, obtaining f that uses at most 5 colors;
- Choose a color not appearing in N(u) with which to color u.

Otherwise, choose $u \in V(G)$ s.t. d(u) = 5 (recall previous slide).

Theorem (Heawood, 1891)

Five colors are always enough to color a map.

By induction on n = |V(G)|. If $n \le 5$, there is nothing to do. If there exists $u \in V(G)$ with d(u) < 5, then

- Apply induction on G u, obtaining f that uses at most 5 colors;
- Choose a color not appearing in N(u) with which to color u.

Otherwise, choose $u \in V(G)$ s.t. d(u) = 5 (recall previous slide).

Theorem (Heawood, 1891)

Five colors are always enough to color a map.

By induction on n = |V(G)|. If $n \le 5$, there is nothing to do. If there exists $u \in V(G)$ with d(u) < 5, then

- Apply induction on G u, obtaining f that uses at most 5 colors;
- Choose a color not appearing in N(u) with which to color u.
- Otherwise, choose $u \in V(G)$ s.t. d(u) = 5 (recall previous slide).

Theorem (Heawood, 1891)

Five colors are always enough to color a map.

By induction on n = |V(G)|. If $n \le 5$, there is nothing to do. If there exists $u \in V(G)$ with d(u) < 5, then

- Apply induction on G u, obtaining f that uses at most 5 colors;
- Choose a color not appearing in N(u) with which to color u.

Otherwise, choose $u \in V(G)$ s.t. d(u) = 5 (recall previous slide).

Theorem (Heawood, 1891)

Five colors are always enough to color a map.

By induction on n = |V(G)|. If $n \le 5$, there is nothing to do. If there exists $u \in V(G)$ with d(u) < 5, then

- Apply induction on G u, obtaining f that uses at most 5 colors;
- Choose a color not appearing in N(u) with which to color u.

Otherwise, choose $u \in V(G)$ s.t. d(u) = 5 (recall previous slide).

Theorem (Heawood, 1891)

Theorem (Heawood, 1891)

Theorem (Heawood, 1891)

Theorem (Heawood, 1891)

Theorem (Heawood, 1891)

Theorem (Heawood, 1891)

Theorem (Heawood, 1891)

Theorem (Heawood, 1891)

Theorem (Heawood, 1891)

Theorem (Heawood, 1891)

Theorem (Heawood, 1891)

Theorem (Heawood, 1891)

Theorem (Heawood, 1891)

Edge k-coloring

- $f: E(G) \rightarrow [k]$ s.t. $f(e) \neq f(e')$ for every <u>adjacent</u> $e, e' \in E(G)$;
- $\chi'(G) = \min k$ for which G admits an edge k-coloring;
- Given G and $k \in \mathbb{N}$, decide $\chi'(G) \leq k$.

Chromatic index

- $f: E(G) \rightarrow [k]$ s.t. $f(e) \neq f(e')$ for every adjacent $e, e' \in E(G)$;
- $\chi'(G) = \min k$ for which G admits an edge k-coloring;
- Given G and $k \in \mathbb{N}$, decide $\chi'(G) \leq k$.

Decision problem

- $f: E(G) \rightarrow [k]$ s.t. $f(e) \neq f(e')$ for every <u>adjacent</u> $e, e' \in E(G)$;
- $\chi'(G) = \min k$ for which G admits an edge k-coloring;
- Given G and $k \in \mathbb{N}$, decide $\chi'(G) \leq k$.

Line graph of G, denoted by L(G).

Line graph of G, denoted by L(G).

Lower bound: clique number of line graph

Proposition

$$\Delta(G) \le \omega(L(G)) \le \chi'(G)$$

Lower bound: clique number of line graph

Proposition

$$\Delta(G) \leq \omega(L(G)) \leq \chi'(G)$$

Lower bound: clique number of line graph

Proposition

$$\Delta(G) \leq \omega(L(G)) \leq \chi'(G) \leq 2\Delta(G) - 1.$$

Coloring edges - Vizing's Theorem

Theorem (Vizing, 1964)

If G is simple, then at most $\Delta(G) + 1$ colors are needed.

Coloring edges - chalenge

Theorem (Holyer, 1981)

Deciding whether $\Delta(G)$ or $\Delta(G) + 1$ is NP-complete, even if G is cubic.

Coloring edges - chalenge

GRAPH CLASS	ME	MBER	IN	INDSET		CLIQUE		Par	CHI	RNUM	CHRIND		HAN	1Cir	Don	4Set	MAXCUT		STT	REE	GRAISO	
Trees/Forests	P	[T]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	P	[GJ]	P	[T]	P	[GJ]
Almost Trees (k)	P		P	[24]	P	[T]	P?		P?		P?		P?		P	[45]	P?		P?		P?	
Partial k-Trees	P	[2]	P	[1]	P	[T]	P?		P	[1]	0?		P	[3]	P	[3]	P?		P?		0?	
Bandwidth-k	P	[68]	P	[64]	P	[T]	P?		P	[64]	P?		P?		P	[64]	P	[64]	P?		P	[58]
Degree-k	P	[T]	N	[GJ]	P	[T]	N	[GJ]	N	[GJ]	N	[49]	N	[GJ]	N	[GJ]	N	[GJ]	N	[GJ]	P	[58]
Planar	P	[GJ]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	0		N	[GJ]	N	[GJ]	P	[GJ]	N	[35]	P	[GJ
Series Parallel	P	[79]	P	[75]	P	[T]	P?		P	[74]	P	[74]	P	[74]	P	[54]	P	[GJ]	P	[82]	P	[GJ
Outerplanar	P		P	[6]	P	[T]	P	[6]	P	[67]	P	[67]	P	[T]	P	[6]	P	[GJ]	P	[81]	P	[GJ
Halin	P		P	[6]	P	[T]	P	[6]	P	[74]	P	[74]	P	[T]	P	[6]	P	[GJ]	P?		P	[GJ
k-Outerplanar	P		P	[6]	P	[T]	P	[6]	P	[6]	0?		P	[6]	P	[6]	P	[GJ]	P?		P	[GJ
Grid	P		P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[51]	N	[55]	P	[T]	N	[35]	P	[GJ
K _{3,3} -Free	P	[4]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	0?		N	[GJ]	N	[GJ]	P	[5]	N	[GJ]	0?	
Thickness-k	N	[60]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	N	[49]	N	[GJ]	N	[G1]	N	[7]	N	[GJ]	0?	
Genus-k	P	[34]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	0?		N	[GJ]	N	[GJ]	0?		N	[GJ]	P	[61]
Perfect	0!		P	[42]	P	[42]	P	[42]	P	[42]	0?		N	[1]	N	[14]	0?		N	[GJ]	I	[GJ
Chordal	P	[76]	P	[40]	P	[40]	P	[40]	P	[40]	0?		N	[22]	N	[14]	0?		N	[83]	I	[GJ
Split	P	[40]	P	[40]	P	[40]	P	[40]	P	[40]	0?		N	[22]	N	[19]	O?		N	[83]	I	[15]
Strongly Chordal	P	[31]	P	[40]	P	[40]	P	[40]	P	[40]	0?		0?		P	[32]	O ?		P	[83]	0?	
Comparability	P	[40]	P	[40]	P	[40]	P	[40]	P	[40]	0?		N	[1]	N	[28]	O?		N	[GJ]	I	[GJ
Bipartite	P	[T]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[1]	N	[28]	P	[T]	N	[GJ]	I	[GJ
Permutation	P	[40]	P	[40]	P	[40]	P	[40]	P	[40]	0?		O		P	[33]	O?		P	[23]	P	[21]
Cographs	P	[T]	P	[40]	P	[40]	P	[40]	P	[40]	O?		P	[25]	P	[33]	O ?		P	[23]	P	[25]
Undirected Path	P	[39]	P	[40]	P	[40]	P	[40]	P	[40]	0?		0?		N	[16]	0?		0?		I	[GJ
Directed Path	P	[38]	P	[40]	P	[40]	P	[40]	P	[40]	0?		0?		P	[16]	0?		P	[83]	0?	
Interval	P	[17]	P	[44]	P	[44]	P	[44]	P	[44]	0?		P	[53]	P	[16]	0?		P	[83]	P	[57]
Circular Arc	P	[78]	P	[44]	P	[50]	P	[44]	N	[36]	0?		0?		P	[13]	0?		P	[83]	0?	
Circle	P	[71]	P	[GJ]	P	[50]	0?		N	[36]	0?		P	[12]	0?		0?		P	[70]	0?	
Proper Circ. Arc	P	[77]	P	[44]	P	[50]	P	[44]	P	[66]	0?		P	[12]	P	[13]	0?		P	[83]	0?	
Edge (or Line)	P	[47]	P	[GJ]	P	[T]	N	[GJ]	N	[49]	0?		N	[11]	N	[GJ]	0?		N	[70]	I	[15]
Claw-Free	P	[T]	P	[63]	0?		N	[GJ]	N	[49]	0?		N	[11]	N	[GJ]	0?		N	[70]	Ι	[15

Johnson. The NP-completeness column: an ongoing guide. J. of Algorithms 6 (3) (1985) 434-451.

Coloring edges - chalenge

GRAPH CLASS	M	EMBER	In	DSET	Cı	JQUE	Cı	.1PAR	Cı	HRNUM	Сн	RIND	H	MCIR	D	OMSET	MΑ	хСит	Sı	TREE	G	RAPHISC
TREES/FORESTS	Р	[T]	P	[GJ]	Р	[T]	Р	[GJ]	Р	[T]	Р	[GJ]	Р	[T]	Р	[GJ]	Р	[GJ]	Р	[T]	Р	[GJ]
ALMOST TREES (k)	Р	[OG]	Р	[OG]	P	[T]	P	[105]	P	[5]	Р	[17]	Р	[5]	P	[5]	P	[20]	P	[76]	P	[17]
PARTIAL k-TREES	Р	[OG]	Р	[5]	Р	[T]	P	[105]	Р	[5]	Р	[17]	Р	[5]	Р	[5]	P	[20]	P	[76]	P	[17]
BANDWIDTH-k	Р	[OG]	Р	[OG]	P	[T]	P	[105]	Р	[5]	Р	[17]	Р	[5]	P	[5]	P	[OG]	P	[76]	P	[OG]
Degree-k	Р	[T]	N	[GJ]	P	[T]	Ν	[29]	Ν	[GJ]	N	[OG]	N	[GJ]	Ν	[GJ]	N	[GJ]	Ν	[GJ]	P	[OG]
PLANAR	Р	[GJ]	N	[GJ]	Р	[T]	N	[78]	N	[GJ]	0		N	[GJ]	N	[GJ]	Р	[GJ]	N	[OG]	Р	[GJ]
SERIES PARALLEL	Р	[OG]	Р	[OG]	Р	[T]	P	[105]	Р	[5]	Р	[17]	Р	[5]	Р	[OG]	P	[GJ]	Р	[OG]	P	[GJ]
OUTERPLANAR	Р	[OG]	Р	[OG]	Р	[T]	Р	[OG]	Р	[OG]	Р	[OG]	Р	[T]	Р	[OG]	Р	[GJ]	Р	[OG]	P	[GJ]
HALIN	Р	[OG]	Р	[OG]	Р	[T]	Р	[OG]	Р	[5]	Р	[17]	Р	[T]	Р	[OG]	Р	[GJ]	P	[118]	P	[GJ]
k-Outerplanar	Р	[OG]	Р	[OG]	P	[T]	P	[OG]	Р	[5]	Р	[17]	Р	[OG]	P	[OG]	P	[GJ]	P	[76]	P	[GJ]
GRID	Р	[OG]	Р	[GJ]	P	[T]	P	[GJ]	P	[T]	Р	[GJ]	N	[OG]	N	[32]	P	[T]	N	[OG]	P	[GJ]
K _{3,3} -Free*	Р	[OG]	N	[GJ]	P	[T]	N	[78]	Ν	[GJ]	0?		N	[GJ]	N	[GJ]	P	[OG]	Ν	[GJ]	P	[40]
THICKNESS-k	N	[OG]	N	[GJ]	Р	[T]	N	[78]	Ν	[GJ]	N	[OG]	N	[GJ]	N	[GJ]	N	[119]	Ν	[GJ]	ī.	[RJ]
Genus-k	Р	[OG]	N	[GJ]	P	[T]	N	[78]	Ν	[GJ]	Ο?		N	[GJ]	N	[GJ]	0?		Ν	[GJ]	P	[OG]
PERFECT	P	[34]	Р	[OG]	Р	[OG]	Р	[OG]	Р	[OG]	N	[28]	N	[OG]	N	[OG]	N	[20]	N	[GJ]	ī	[84]
CHORDAL	Р	[OG]	Р	[OG]	Р	[OG]	Р	[OG]	Р	[OG]	0?		N	[93]	Ν	[OG]	Ν	[20]	Ν	[OG]	ī.	[84]
SPLIT	Р	[OG]	Р	[OG]	Р	[OG]	Р	[OG]	Р	[OG]	0?		N	[93]	N	[OG]	N	[20]	Ν	[OG]	ī.	[108]
STRONGLY CHORDAL	Р	[OG]	Р	[OG]	P	[OG]	Р	[OG]	Р	[OG]	0?		N	[93]	P	[OG]	N	[109]	P	[OG]	ī.	[111]
COMPARABILITY	Р	[OG]	P	[OG]	P	[OG]	P	[OG]	P	[OG]	N	[28]	N	[OG]	N	[94]	N	[102]	Ν	[GJ]	ī.	[22]
BIPARTITE	Р	[T]	Р	[GJ]	Р	[T]	Р	[GJ]	Р	[T]	Р	[GJ]	Ν	[OG]	Ν	[94]	P	[T]	Ν	[GJ]	1	[22]
PERMUTATION	Р	[OG]	Р	[OG]	Р	[OG]	Р	[OG]	Р	[OG]	0?		Р	[44]	Р	[OG]	Ν	[120]	Р	[OG]	P	[OG]
COGRAPHS	Р	[T]	Р	[OG]	P	[OG]	Р	[OG]	Р	[OG]	0?		Р	[OG]	P	[OG]	P	[20]	Р	[OG]	P	[OG]
UNDIRECTED Path	Р	[OG]	Р	[OG]	Р	[OG]	Р	[OG]	Р	[OG]	0?		N	[13]	N	[OG]	N	[20]	N	[RJ]	T	[22]
DIRECTED PATH	Р	[OG]	Р	[OG]	P	[OG]	Р	[OG]	P	[OG]	0?		N	[99]	P	[OG]	N	[1]	P	[OG]	P	[7]
INTERVAL	Р	[OG]	Р	[OG]	P	[OG]	P	[OG]	P	[OG]	0?		Р	[OG]	P	[OG]	N	[1]	P	[OG]	P	[OG]
CIRCULAR ARC	Р	[OG]	Р	[OG]	P	[OG]	P	[OG]	Ν	[OG]	0?		Р	[106]	P	[OG]	N	[1]	Р	[11]	P	[80]
CIRCLE	Р	[OG]	Р	[GJ]	P	[OG]	N	[73]	Ν	[OG]	0?		N	[39]	N	[71]	N	[26]	Р	[OG]	P	[68]
PROPER CIRC. ARC	Р	[OG]	Р	[OG]	P	[OG]	P	[OG]	Р	[OG]	0?		Р	[OG]	P	[OG]	0?		P	[11]	P	[82]
EDGE (OR LINE)	Р	[OG]	Р	[GJ]	P	[T]	N	[95]	N	[OG]	N	[28]	N	[OG]	N	[GJ]	P	[59]	N	[19]	ī.	[OG]
CLAW-FREE	Р	ITI	P	[OG]	N	[103]	N	[85]	N	[OG]	N	[28]	N	[OG]	N	[GJ]	N	[20]	N	[19]	1	[OG]

Figueiredo, Melo, Sasaki, S.. Revising Johnson's Table for the 21st century. DAM 323 (2022), 184–200.

Updated version: https://cos.ufrj.br/~celina/ftp/j/RJ-current.pdf.

Concluding remarks

- Upper bounds for $\chi(G)$:
 - $\Delta(G) + 1$, Brook's Theorem and degeneracy;
- ② Lower bounds for $\chi(G)$:

$$\frac{|V(G)|}{\theta(G)}$$
 and $\omega(G)$;

- **3** Construction of graph G s.t. $\omega(G) = 2$ and $\chi(G)$ is arbitrarily large;
- Coloring planar graphs with 6 and 5 colors;
- Coloring the edges of a graph and Vizing's Theorem.

- Upper bounds for $\chi(G)$: $\Delta(G) + 1$, Brook's Theorem and degeneracy;
- **2** Lower bounds for $\chi(G)$:

$$\frac{|V(G)|}{\theta(G)}$$
 and $\omega(G)$;

- **3** Construction of graph G s.t. $\omega(G) = 2$ and $\chi(G)$ is arbitrarily large;
- Coloring planar graphs with 6 and 5 colors
- Oloring the edges of a graph and Vizing's Theorem.

- **1** Upper bounds for $\chi(G)$:
 - $\Delta(G) + 1$, Brook's Theorem and degeneracy;
- **2** Lower bounds for $\chi(G)$:

$$\frac{|V(G)|}{\theta(G)}$$
 and $\omega(G)$;

- **3** Construction of graph G s.t. $\omega(G)=2$ and $\chi(G)$ is arbitrarily large;
- Coloring planar graphs with 6 and 5 colors
- Oloring the edges of a graph and Vizing's Theorem.

- Upper bounds for $\chi(G)$:
 - $\Delta(G) + 1$, Brook's Theorem and degeneracy;
- **2** Lower bounds for $\chi(G)$:

$$\frac{|V(G)|}{\theta(G)}$$
 and $\omega(G)$;

- **3** Construction of graph G s.t. $\omega(G) = 2$ and $\chi(G)$ is arbitrarily large;
- Coloring planar graphs with 6 and 5 colors;
- Oloring the edges of a graph and Vizing's Theorem.

- Upper bounds for $\chi(G)$:
 - $\Delta(G) + 1$, Brook's Theorem and degeneracy;
- **2** Lower bounds for $\chi(G)$:

$$\frac{|V(G)|}{\theta(G)}$$
 and $\omega(G)$;

- **3** Construction of graph G s.t. $\omega(G) = 2$ and $\chi(G)$ is arbitrarily large;
- Coloring planar graphs with 6 and 5 colors;
- Coloring the edges of a graph and Vizing's Theorem.

- Study of many other graph classes;
- Refined computational complexity: approximation and parameterization;
- Theoretical studies gave rise to many new techniques and fields, e.g., discharging method, chromatic polynomials (and generating functions), probabilistic methods, extremal graph theory, etc;
- Many other variations of the coloring problem exist, see e.g. the book by Jensen and Toft, Graph Coloring Problems.

- Study of many other graph classes;
- Refined computational complexity: approximation and parameterization;
- Theoretical studies gave rise to many new techniques and fields, e.g., discharging method, chromatic polynomials (and generating functions), probabilistic methods, extremal graph theory, etc;
- Many other variations of the coloring problem exist, see e.g. the book by Jensen and Toft, Graph Coloring Problems.

- Study of many other graph classes;
- Refined computational complexity: approximation and parameterization;
- Theoretical studies gave rise to many new techniques and fields, e.g., discharging method, chromatic polynomials (and generating functions), probabilistic methods, extremal graph theory, etc;
- Many other variations of the coloring problem exist, see e.g. the book by Jensen and Toft, Graph Coloring Problems.

- Study of many other graph classes;
- Refined computational complexity: approximation and parameterization;
- Theoretical studies gave rise to many new techniques and fields, e.g., discharging method, chromatic polynomials (and generating functions), probabilistic methods, extremal graph theory, etc;
- Many other variations of the coloring problem exist, see e.g. the book by Jensen and Toft, *Graph Coloring Problems*.

Muito obrigada! anasilva@mat.ufc.br