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Graph Coloring

: > o Assign frequencies to radio

antennas;
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Graph Coloring

@ Assign frequencies to radio
antennas;

@ Proximity causes noise;

@ Hence, close antennas must get
distinct frequencies.
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Graph

@ Pair (V. E) of vertices and edges;
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Graph

@ Pair (V, E) of vertices and edges;

o E is a set of subsets of V of size 2;

@ We write uv € E(G), and say that
u, v are adjacent or neighbors.
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Proper Coloring

Proper coloring
o f:V(G)— [K] sit. f(u)# f(v) for
every edge uv € E(G);
@ x(G) = min k for which G admits a
k-coloring;
@ Given G and k € N, decide
x(G) < k.
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Proper Coloring

Chromatic number
o f:V(G) — [K] s.t. f(u)# f(v) for
every edge uv € E(G);
@ x(G) = min k for which G admits a
k-coloring;
@ Given G and k € N, decide
x(G) < k.
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Proper Coloring

Decision problem
o f:V(G)— [K] sit. f(u)# f(v) for
every edge uv € E(G);
@ x(G) = min k for which G admits a
k-coloring;

@ Given G and k € N, decide
x(G) < k.
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Partition into independent sets

Independent set

@ Subset S C V(G) s.t. uv ¢ E(G)
for every u,v € S;
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Partition into independent sets

k-coloring
@ Subset S C V(G) s.t. uv ¢ E(G)
for every u,v € S;

@ Partition Sy,...,Sk s.t. each §; is
an independent set;
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Partition into independent sets

Stable sets

@ Subset S C V(G) s.t. uv ¢ E(G)
for every u,v € S;

o Partition Sy,..., Sk s.t. each §; is
an independent set;

@ Independent sets are also called
stable sets.
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One of the Karp's 21 Problems

@ NP-complete, even if k is fixed, k > 3;

@ Richard Karp.
Reducibility among Combinatorial Problems.
In R. E. Miller and J. W. Thatcher (editors). Complexity of Computer
Computations. New York: Plenum. pp. 85-103, 1972.
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One of the Karp's 21 Problems

@ NP-complete, even if k is fixed, k > 3;

@ Para-NP-complete when parameterized by k;

ﬁ Richard Karp.
Reducibility among Combinatorial Problems.
In R. E. Miller and J. W. Thatcher (editors). Complexity of Computer
Computations. New York: Plenum. pp. 85-103, 1972.
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One of the Karp's 21 Problems

@ NP-complete, even if k is fixed, k > 3;
@ Para-NP-complete when parameterized by k;

@ Impossible to approximate by a constant factor, unles P = NP.

@ Lund e Yannakakis.
On the hardness of approximating minimization problems.
J. of the ACM 41 (1994) 960-981.
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Upper bound: maximum degree plus one

Iterate on each u € V/(G), giving smallest color not in N(u).
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Upper bound: maximum degree plus one

Iterate on the order, giving smallest color not in N(u;) for each i.
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Upper bound: maximum degree plus one

Iterate on the order, giving smallest color not in N(u;) for each i.

Let A(G) be the maximum degree of G. Then x(G) < A(G) + 1.

Proposition J
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Upper bound: maximum degree plusone

@ Forevery i € {1,...,n— 1}, there exists j > i s.t. u;u;j is an edge; and
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Upper bound: maximum degree plusone

o Forevery i€ {1,...,n— 1}, there exists j > i s.t. uju; is an edge; and

@ uiUy,, Upu, are edges, and uyup is not an edge.
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Upper bound: maximum degree plusone

o Forevery i€ {1,...,n— 1}, there exists j > i s.t. uju; is an edge; and
= u; has < d(u;) — 1 colored neighbors

@ uyUp, Upu, are edges, and uyup is not an edge.

12 /40



Upper bound: maximum degree plusone

o Forevery i€ {1,...,n— 1}, there exists j > i s.t. uju; is an edge; and
= u; has < d(u;) — 1 colored neighbors

@ uyUp, Upu, are edges, and uyup is not an edge.
= u, has 2 neighbors of the same color
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Upper bound: maximum degree plusone

o Forevery i€ {1,...,n— 1}, there exists j > i s.t. uju; is an edge; and
= u; has < d(u;) — 1 colored neighbors

@ uyUp, Upu, are edges, and uyup is not an edge.
= u, has 2 neighbors of the same color

Obtained coloring uses at most A(G) colors.
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Upper bound: maximum degree plusone

Proposition
If (uy,...,up) Is an ordering s.t.:
o fForeveryi€{l,...,n— 1}, there exists j > i s.t. u;u; is an edge; and

@ uyu,, Upu, are edges, and ujuy is not an edge,
then x(G) < A(G).
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@ uyu,, Upu, are edges, and ujuy is not an edge,
then x(G) < A(G).

Theorem (Brooks, 1941)

Such an order exists iff G is neither an odd cycle, nor a complete graph.
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Upper bound: maximum degree plusone

Proposition
If (uy,...,up) Is an ordering s.t.:
o fForeveryi€{l,...,n— 1}, there exists j > i s.t. u;u; is an edge; and

@ uyu,, Upu, are edges, and ujuy is not an edge,
then x(G) < A(G).

Theorem (Brooks, 1941)

Such an order exists iff G is neither an odd cycle, nor a complete graph.
X(G) = A(G) + 1 iff G is an odd cycle, or a complete graph.
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Upper bound: degeneracy

Iteratively put in the beginning the vertex with smallest degree.
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Upper bound: degeneracy
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Iteratively put in the beginning the vertex with smallest degree.
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Upper bound: degeneracy
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Iteratively put in the beginning the vertex with smallest degree.
Order that produces a coloring with at most 4 colors.
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Upper bound: degeneracy

Degeneracy (or coloring number)

(minimum degree 6(H) over all subgraphs H of G, plus 1.)

col(G) =1+ lrygaé(S(H).
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Upper bound: degeneracy

Degeneracy (or coloring number)

(minimum degree §(H) over all subgraphs H of G, plus 1.)

col(G) =1+ lrygaé(S(H).

Theorem (Szekeres-Wilf, 1968)

X(G) < col(G).
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Lower bound: n over max independent set

Recall:

Independent set

@ Subset S C V(G) s.t. uv ¢ E(G)
for every u,v € S;
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k-coloring
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Lower bound: n over max independent set

Recall:

k-coloring
@ Subset S C V(G) s.t. uv ¢ E(G)
for every u,v € S;

o Partition Sy,..., Sk s.t. each S; is
an independent set; and

0(G) = max|S| s.t. S is an independent set of G.
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Lower bound: n over max independent set

Recall:

k-coloring
@ Subset S C V(G) s.t. uv ¢ E(G)
for every u,v € S;

o Partition Sy,..., Sk s.t. each S; is
an independent set; and

0(G) = max|S| s.t. S is an independent set of G.

Proposition
For every graph G,
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Lower bound: clique number
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Lower bound: clique number

Clique
@ Subset S C V(G) s.t. uv € E(G) for every u,v € S;
@ Maximum size of a clique; denoted by w(G).
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Lower bound: clique number

Clique number
@ Subset S C V(G) s.t. uv € E(G) for every u,v € S;
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Remark
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Clique number can be arbitrarily smaller than x(G).
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Mycielki's construction
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Mycielki's construction

OO 6
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Mycielki's construction

QMQ
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Mycielki's construction

Mycielskian of G



Mycielki's construction

Proposition
If G has no triangles, then the Mycielskian of G also has no triangles. J
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Mycielki's construction

Proposition
If G has no triangles, then the Mycielskian of G also has no triangles.

Proposition
If x(G) = k, then x(G") = k+ 1, where G’ is the Mycielskian of G.

Corollary
For each integer k > 2, there exists G s.t. w(G) =2 and x(G) = k.
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Coloring a map










Coloring a-map planar graph

DA
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Four color Theorem

Conjecture (Guthrie, 1852)

(Wrongfully credited to De Morgan)
Four colors are always enough to color a map.
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Four color Theorem

Conjecture (Guthrie, 1852)
(Wrongfully credited to De Morgan)

Four colors are always enough to color a map.

Theorem (Appel and Haken, 1989)

Sure! (But to do it, we need computers!)
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Eeur Six color theorem

Theorem (Kempe, 1879) J

Six colors are always enough to color a map.
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Four Six color theorem

Theorem (Kempe, 1879)

Six colors are always enough to color a map.

Suppose G triangulated. We get > . |f| =3F =2m.
By Euler's Relation (n — m+ F = 2), we then get:

6n—6m+6F =6n—6m+4m=6n—2m = 12.

We also know that 2m = d(v). Therefore:
veVv(G)

- Y dv)= > (6-d(v)) =

veV(G) veV(G)

It follows that there exists v € V(G) such that d(v) < 6.
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Four Six color theorem

Theorem (Kempe, 1879)

Six colors are always enough to color a map.

Suppose G triangulated. We get > . |f| =3F =2m.
By Euler's Relation (n — m+ F = 2), we then get:

6n—6m+6F =6n—6m+4m=6n—2m = 12.

We also know that 2m =3, (¢) d(v). Therefore:

— Y dv)= ) (6-d(v))=

veV(G) veV(G)

It follows that there exists v € V(G) such that d(v) < 6. In other words, G is
5-degenerate and hence can be colored with 6 colors.
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Foeur Five color theorem

Theorem (Heawood, 1891) J

Five colors are always enough to color a map.
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By induction on n = |V(G)|. If n <5, there is nothing to do.
If there exists u € V(G) with d(u) <5, then

@ Apply induction on G — u, obtaining f that uses at most 5 colors;

@ Choose a color not appearing in N(u) with which to color w.
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Four Five color theorem

Theorem (Heawood, 1891)

Five colors are always enough to color a map. J

By induction on n = |V(G)|. If n <5, there is nothing to do.
If there exists u € V(G) with d(u) <5, then

@ Apply induction on G — u, obtaining f that uses at most 5 colors;
@ Choose a color not appearing in N(u) with which to color w.
Otherwise, choose u € V(G) s.t. d(u) =5 (recall previous slide).
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Eeur Five color theorem

Theorem (Heawood, 1891) J

Five colors are always enough to color a map.
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Coloring edges

Edge k-coloring

o f: E(G) — [K] s.it. f(e)# f(€') for
every adjacent e, ¢’ € E(G);
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Coloring edges

Chromatic index
o f: E(G) — [K] st. f(e)# (') for
every adjacent e, e’ € E(G);
@ x'(G) = min k for which G admits
an edge k-coloring;
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Coloring edges

Decision problem
o f: E(G) — [K] s.it. f(e)# f(e') for
every adjacent e, e’ € E(G);
@ x/(G) = min k for which G admits
an edge k-coloring;

@ Given G and k € N, decide
X'(G) < k.
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Equivalent to coloring line graphs
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Lower bound: clique number of line graph
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Coloring edges - Vizing's Theorem

Theorem (Vizing, 1964)
If G is simple, then at most A(G) + 1 colors are needed. J
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Coloring edges - chalenge

Theorem (Holyer, 1981)
Deciding whether A(G) or A(G) + 1 is NP-complete, even if G is cubic. J
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Coloring edges - chalenge

GRraPH CLASS MemBER | INDSET  Cuque. CLIPAR  CHRNUM CHRIND — HAMCIR — DomSET ~ MAXCut  STTREE  GRAIs0
Trees/Forests. P [M|P [GI P [T] P [G]] P [T) P [G P [T] P [GI P [G]] P [T) P [G]
Almost Trees (k) | P P [24] P [T] P? P? P? P? P [45] P? P? P?

Partial k-Trees  |P - [2) |P (1] P [T} P? Py 07 P [3 P B P P? [o4]

Bandwidth-k P [68] |P [84] P [T] P? P [64] D7 P? P [64] P [64] P? P [58]
Degree k P [T |N G P IT] N [ N [G] N M9 N [G] N [G] N (G N [G] P [58]
“Planar P (G |N [GI] P [T] N (10] N [G] O N [G]] N [G] P [(G] N [35 P [G]
SeresParallel |P  [79] [P [75] P [T] P? P [74] P [74] P [14] P [54 P [GI] P [82] P [G]]
Quterplanar P P [6) P [T P [6] P [67] P [67]1 P [T] P [6] P [G]] P [81] P [G]]
Halin P P P [T] P [6] P [74 P [4] P [T] P [6] P [G]] P? P [G]]
k-Outerplanar P P [ P [T P [61 P [6 O7 P [6 P [6] P [GI P? P [an
Grid P P [G] P [T] P [G] P [T) P [GI] N [51] N [55] P [I] N [35 P [GI]]
K, yFree P [4 |N [G] P [T] N [10] N [cI] O? N [G] N [G] P [5] N [G] O?

Thickness-k N [60] [N [G]] P [T] N [10] N [G]] N [49 N |[GIl N [G)] N [71 N [G]] O?

Genus-k P [34] |N [GJ] P [T] N [0 N [GI] Q7 N [G]] N [G]] O7 N [G] P [61]
Perfect ot P [42] P [42] P [42] P [42] O? N [ N (4 o2 N [G1] T [Gf
Chordal P [76] |P [40] P [40] P [40] P [40] O? N [2] N [14 O? N [83] I [G]]
Split. P [40] [P [40) P [40] P [40] P [40] Q7 N [2] N [19] O? N [83] T [13]
Strongly Chordal | P [31] [P [40] P [40] P [40] P [40] O? 0? P[] O? P [83] 07

Comparability |P [40] [P [40] P [40] P [40] P [40] Q7 N [ N [28 O N [G] I [G]]
Bipartite Po[m |P [G] P [T) P [G] P [T] P [G] N [1] N [20 P [T] N [G] I [G]]
Permutation P [40] |P [40] P [40] P [40] P [40] O? o P [33] O? P [23] P [21]
Cographs P [T] |P [40] P [40] P [40] P [40] O7 P [25] P [33] O7 P [23] P [25]
Undirected Path | P [30] | P [40] P [40] P [40) P [40] O? 07 N [16] O? o7 T [G]
Directed Path P [38] |P [40] P [40] P [40] P [40] O7 o? P [l6] O? P [83] O7

Interval P [17]1 |P [44) P [44] P [44] P [44] Q7 P [53] P [16] 07 P [83] P [57]
Circular Are P O[] [P [44] P [50] P [44] N [36] O? 07 P o[13] 02 P [83] 07

Circle P [711|P [GI1 P [50] O? N [38 07 P (121 O? o P [70] O7

Proper Circ. Arc [P [77] [P [44] P [50] P [44] P [66] O7 P [12] P [13] 07 P [83] O7

Edge(orLine) |P [47] [P [G] P [T] N [G]] N [40] O? N [1] N [G] O? N [0 I [15]
Claw-Free P [T] |P [63] O7 N [G] N [49] O? N [i1] N [GI] O? N [70] T [15]

Jok The NP. | an guide. J. of Algorithms 6 (3) (1985) 434-451.
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Coloring edges -

chalenge

Grai CLass Meuse | INDSET CLIQUE CLIPAR CHRNUM| CHRIND | HAMCIR DOMSET MAXCUT STTREE GRaPHISO
TREES/FORESTS. P [m PG P IT PGNP [T] P IGHYP [T] P IG] P [GN P [Tl P [G]]
AumosT Trees (k) [P [0G] [P [0G] P [T] P [105] P [5] P 7P 51 P 5] P [200 P [76] P [17]
PARTIAL k-TREES P [OG] [P [5S1 P IT] P [105] P [5] P 7P 51 P 5] P [20] P [76] P [17]
BANDWIDTH-k P [0G] [P [0G] P [T] P [105] P [5] P 7P 51 P 5] P [0G] P [76]1 P [OG]
Dicree-k BT [NIGH P M N @91 WO(GH | N I0GI| N GN N IG N (GN N IGH P0G
PLANAR PG [N G P m N ops NG |o NG NG P oGN] N [OG] P (GH]
Semies ParaLLeL P [0G] [P [0G] P [T] P [ws] P [s] |p mife 151 P [0G] P 6N P [0G] P [G]
OuTERPLANAR P [0G] |P [0G] P [T P [0G] P [0G] [P [0GI|P [T] P [0G] P [GN] P [0G] P [G]]
Haun P0G |P [0G] P [T P [0G] P [S| [P [P [Tl P [0G] P [GN] P [us] P [G]]
k-OUTERPLANAR P [0G] [P [0G] P [T] P [OG] P [5] P 71 |P [OG] P [0G] P [GI] P [76] P [GI]
GRID P [OG] [P [G] P [T P [GI P [T] P IGIIN [OG] N [321 P [T] N [0G] P [G]]
Ks3-FREE™ P [OG] [N [G] P IT] N [78] N [GN NO[GN N OIG P [OG] N IGI] P [40]
THICKNESS-k NO[OG] [N [GN] P ITI N [78] N [GI |N [OGYN [GN N [GJ N [19] N [GJ] 1| [RI]
GENUS-k P [OG] [N [GN] P IT] N [78] N [GN 0 NG NG O NG P oO[0G]
- P 134 |P [0G] P [0G] P 10G] P [0G] [N 8| [0G] W joG] N [20] N o[Gi 1 [s4]
CrorpAL P [0G] |P [0G] P [0G] P [0G] P [OG] N3] N O[OG] N [20] N [OG] I [84]
SeLT P [0G] |P [0G] P [0G] P [0G] P [OG] N3] N O[OG] N [20] N [OG] I [108]
STRONGLY CHORDAL | P [0G] P [0G] P [OG] P [0G] P [OG] J O N [93] P [OG] N [109] P [OG] | [111]
COMPARABILITY P [0G] [P [0G] P [OG] P [OG] P [OG] §N [28] §N [OG] N [94] N [102] N [GJ] | [22]
BiearTITE P [m PG P IT PGNP [T] P IGIN [OG] N [94 P [T] N [G] | [22]
PERMUTATION P [0G] [P [0G] P [OG] P [0G] P [0G] P [#4] P [O0G] N [120] P [OG] P [0G]
COGRAPHS. P [m P [0G] P [OG] P [OG] P [OG] P [OG] P [OG] P [20] P [OG] P [OG]
UNDIRECTED Path | £ [0GI [P [0GI P [0GI P [0G] P [0G] N3N 0GI N [20] N RN OD 2]
DIRECTEDPATH | [0G] [P [0GI P [0GI P [0G] P [0G] N[99 P [0GI N (I P [0G P (7]
INTERVAL P [0G] |P [0G] P [0G] P [0G] P [0G] P [0G] P [0G] N [1] P [0G] P [0G]
CrrcuLar Arc P [0G] |P [0G] P [0G] P [0G] N [0G] P o[106] P [0G] N [1] P[] P [80]
Circe P [0G] |P [GN] P [OG] N [73] N [0G] N [39 NP N [26] P [OG] P [6S]
ProvER CiRC. ARc |P [0G] |P [0G] P [0G] P [0G] P [0G] P [0G] P [0G] O P Pos
EDGE (OR LINE) P [OG] [P [GN] P IT] N [951 N [OG] §N [28] §N [OG] N [GJI P [591 N [19]1 | [OG]
CLAW-FREE P [m P [OG] N [103] N [85] N [OG] |N [28] §N [OG] N [GJI N [200 N [191 | [OG]
Figueiredo, Melo, Sasaki, S.. Revising Johnson's Table for the 21st century. DAM 323 (2022), 184-200.

Updated version: https://cos.ufrj.br/~celina/ftp/j/RI-current.pdf.
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Summing up

@ Upper bounds for x(G):
A(G) + 1, Brook's Theorem and degeneracy;
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Summing up

@ Upper bounds for x(G):
A(G) + 1, Brook's Theorem and degeneracy;

@ Lower bounds for x(G):

“g((g))l and w(G);

@ Construction of graph G s.t. w(G) =2 and x(G) is arbitrarily large;
@ Coloring planar graphs with 6 and 5 colors;
@ Coloring the edges of a graph and Vizing's Theorem.
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So much more

@ Study of many other graph classes;
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So much more

@ Study of many other graph classes;
@ Refined computational complexity: approximation and parameterization;

@ Theoretical studies gave rise to many new techniques and fields, e.g.,
discharging method, chromatic polynomials (and generating functions),
probabilistic methods, extremal graph theory, etc;

@ Many other variations of the coloring problem exist, see e.g. the book by
Jensen and Toft, Graph Coloring Problems.
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Muito obrigadal!

anasilva@mat.ufc.br
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