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Graph Coloring

Assign frequencies to radio
antennas;
Proximity causes noise;
Hence, close antennas must get
distinct frequencies.
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Graph

Pair (V ,E ) of vertices and edges;
E is a set of subsets of V of size 2;
We write uv ∈ E (G ), and say that
u, v are adjacent or neighbors.

5 / 40



Graph

Pair (V ,E ) of vertices and edges;
E is a set of subsets of V of size 2;
We write uv ∈ E (G ), and say that
u, v are adjacent or neighbors.

5 / 40



Graph

Pair (V ,E ) of vertices and edges;
E is a set of subsets of V of size 2;
We write uv ∈ E (G ), and say that
u, v are adjacent or neighbors.

5 / 40



Proper Coloring

Proper coloring
f : V (G )→ [k] s.t. f (u) 6= f (v) for
every edge uv ∈ E (G );
χ(G ) = min k for which G admits a
k-coloring;
Given G and k ∈ N, decide
χ(G ) ≤ k .
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Proper Coloring

Decision problem
f : V (G )→ [k] s.t. f (u) 6= f (v) for
every edge uv ∈ E (G );
χ(G ) = min k for which G admits a
k-coloring;
Given G and k ∈ N, decide
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Partition into independent sets

Independent set
Subset S ⊆ V (G ) s.t. uv /∈ E (G )
for every u, v ∈ S ;
Partition S1, . . . ,Sk s.t. each Si is
an independent set;
Independent sets are also called
stable sets.
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One of the Karp’s 21 Problems

NP-complete, even if k is fixed, k ≥ 3;

Para-NP-complete when parameterized by k ;

Impossible to approximate by a constant factor, unles P = NP.

Richard Karp.
Reducibility among Combinatorial Problems.
In R. E. Miller and J. W. Thatcher (editors). Complexity of Computer
Computations. New York: Plenum. pp. 85–103, 1972.
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One of the Karp’s 21 Problems

NP-complete, even if k is fixed, k ≥ 3;

Para-NP-complete when parameterized by k ;

Impossible to approximate by a constant factor, unles P = NP.

Lund e Yannakakis.
On the hardness of approximating minimization problems.
J. of the ACM 41 (1994) 960–981.
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Some upper bounds
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Upper bound: maximum degree plus one

Iterate on each u ∈ V (G ), giving smallest color not in N(u).
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Upper bound: maximum degree plus one

u1 u2 u3 u4 ui un. . . . . .

Iterate on the order, giving smallest color not in N(ui ) for each i .

Proposition
Let ∆(G ) be the maximum degree of G . Then χ(G ) ≤ ∆(G ) + 1.
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Upper bound: maximum degree plus one

u1 u2 u3 u4 ui un. . . . . .

For every i ∈ {1, . . . , n − 1}, there exists j > i s.t. uiuj is an edge; and

⇒ ui has ≤ d(ui )− 1 colored neighbors

u1un, u2un are edges, and u1u2 is not an edge.

⇒ un has 2 neighbors of the same color

Obtained coloring uses at most ∆(G ) colors.
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Upper bound: maximum degree plus one

Proposition
If (u1, . . . , un) is an ordering s.t.:

For every i ∈ {1, . . . , n − 1}, there exists j > i s.t. uiuj is an edge; and
u1un, u2un are edges, and u1u2 is not an edge,

then χ(G ) ≤ ∆(G ).

Theorem (Brooks, 1941)
Such an order exists iff G is neither an odd cycle, nor a complete graph.

χ(G ) = ∆(G ) + 1 iff G is an odd cycle, or a complete graph.
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Upper bound: degeneracy
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Iteratively put in the beginning the vertex with smallest degree.

Order that produces a coloring with at most 4 colors.
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Upper bound: degeneracy

Degeneracy (or coloring number)
(minimum degree δ(H) over all subgraphs H of G , plus 1.)

col(G ) = 1 + max
H⊆G

δ(H).

Theorem (Szekeres-Wilf, 1968)

χ(G ) ≤ col(G ).
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Some lower bounds
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Lower bound: n over max independent set

Recall:

Independent set
Subset S ⊆ V (G ) s.t. uv /∈ E (G )
for every u, v ∈ S ;
Partition S1, . . . ,Sk s.t. each Si is
an independent set; and

θ(G ) = max |S | s.t. S is an independent set of G .

Proposition
For every graph G ,

χ(G ) ≥ |V (G )|
θ(G )

.
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Lower bound: clique number

Subset S ⊆ V (G ) s.t. uv ∈ E (G ) for every u, v ∈ S ;
Maximum size of a clique; denoted by ω(G ).

Remark
χ(G ) ≥ ω(G ).
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Clique number can be arbitrarily smaller than χ(G ).
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Mycielki’s construction

Proposition
If G has no triangles, then the Mycielskian of G also has no triangles.

Proposition
If χ(G ) = k , then χ(G ′) = k + 1, where G ′ is the Mycielskian of G .

Corollary
For each integer k ≥ 2, there exists G s.t. ω(G ) = 2 and χ(G ) = k .
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Coloring planar graphs
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Coloring a map
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Coloring a map planar graph

RS

SC

PR

MS

SP

MG

RJ

ES

GO

MT

PA

TOROAC

AM

RR AP

MA

PI

BA

CE

RN

PB

PE

AL

SE

24 / 40



Coloring a map planar graph

RS

SC

PR

MS

SP

MG

RJ

ES

GO

MT

PA

TOROAC

AM

RR AP

MA

PI

BA

CE

RN

PB

PE

AL

SE

24 / 40
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Four color Theorem

Conjecture (Guthrie, 1852)
(Wrongfully credited to De Morgan)
Four colors are always enough to color a map.

Theorem (Appel and Haken, 1989)
Sure! (But to do it, we need computers!)
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Four Six color theorem

Theorem (Kempe, 1879)
Six colors are always enough to color a map.

Suppose G triangulated. We get
∑

f |f | = 3F = 2m.
By Euler’s Relation (n −m + F = 2), we then get:

6n − 6m + 6F = 6n − 6m + 4m = 6n − 2m = 12.

We also know that 2m =
∑

v∈V (G) d(v). Therefore:

6n −
∑

v∈V (G)

d(v) =
∑

v∈V (G)

(6− d(v)) = 12.

It follows that there exists v ∈ V (G ) such that d(v) < 6. In other words, G is
5-degenerate and hence can be colored with 6 colors.
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Four Five color theorem

Theorem (Heawood, 1891)
Five colors are always enough to color a map.

By induction on n = |V (G )|. If n ≤ 5, there is nothing to do.
If there exists u ∈ V (G ) with d(u) < 5, then

Apply induction on G − u, obtaining f that uses at most 5 colors;
Choose a color not appearing in N(u) with which to color u.

Otherwise, choose u ∈ V (G ) s.t. d(u) = 5 (recall previous slide).
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Coloring edges
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Coloring edges

Edge k-coloring
f : E (G )→ [k] s.t. f (e) 6= f (e′) for
every adjacent e, e′ ∈ E (G );
χ′(G ) = min k for which G admits
an edge k-coloring;
Given G and k ∈ N, decide
χ′(G ) ≤ k .
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Coloring edges

Decision problem
f : E (G )→ [k] s.t. f (e) 6= f (e′) for
every adjacent e, e′ ∈ E (G );
χ′(G ) = min k for which G admits
an edge k-coloring;
Given G and k ∈ N, decide
χ′(G ) ≤ k .
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Equivalent to coloring line graphs

Line graph of G , denoted by L(G ).
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Lower bound: clique number of line graph

Proposition

∆(G ) ≤ ω(L(G )) ≤ χ′(G )

≤ 2∆(G )− 1

.
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Coloring edges - Vizing’s Theorem

Theorem (Vizing, 1964)
If G is simple, then at most ∆(G ) + 1 colors are needed.
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Coloring edges - chalenge

Theorem (Holyer, 1981)
Deciding whether ∆(G ) or ∆(G ) + 1 is NP-complete, even if G is cubic.
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Coloring edges - chalenge

Johnson. The NP-completeness column: an ongoing guide. J. of Algorithms 6 (3) (1985) 434–451.

35 / 40



Coloring edges - chalenge

Figueiredo, Melo, Sasaki, S.. Revising Johnson’s Table for the 21st century. DAM 323 (2022), 184–200.
Updated version: https://cos.ufrj.br/~celina/ftp/j/RJ-current.pdf.
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Concluding remarks
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Summing up

1 Upper bounds for χ(G ):
∆(G ) + 1, Brook’s Theorem and degeneracy;

2 Lower bounds for χ(G ):
|V (G)|
θ(G) and ω(G );

3 Construction of graph G s.t. ω(G ) = 2 and χ(G ) is arbitrarily large;
4 Coloring planar graphs with 6 and 5 colors;
5 Coloring the edges of a graph and Vizing’s Theorem.
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So much more

Study of many other graph classes;
Refined computational complexity: approximation and parameterization;
Theoretical studies gave rise to many new techniques and fields, e.g.,
discharging method, chromatic polynomials (and generating functions),
probabilistic methods, extremal graph theory, etc;
Many other variations of the coloring problem exist, see e.g. the book by
Jensen and Toft, Graph Coloring Problems.
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Muito obrigada!
anasilva@mat.ufc.br
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