## Dynamical interaction of plant communities and conservation strategies

Pablo Aguirre

Departamento de Matemática Universidad Técnica Federico Santa María Valparaíso, Chile

Joint work with Elisa Domínguez-Hüttinger Jaime Acosta-Arreola, Jorge A. Meave Universidad Nacional Autónoma de México

Nicolás González M. DMAT, UTFSM

ロト (日) (日) (日) (日) (日) (0)

Latin American Congress on Industrial and Applied Mathematics LACIAM 2023





## San Ángel Pedregal Ecological Reserve (REPSA)

\* Protected area in the central campus of the National Autonomous University of Mexico (UNAM), Mexico City.

\* Urban reserve, 237.33 ha.

\* Micro-environments (soil, humidity and temperature) with their own biodiversity.

\* Scientific research and dissemination.



Image: REPSA, UNAM.

San Ángel Pedregal Ecological Reserve (REPSA)

Tres especies de árboles que juegan un papel clave en la estructuración del ecosistema.





Eucaliptus Australiano Rojo Eucalyptus camaldulensis (exótico) < 50 m

イロト イボト イヨト イヨト 三日

"Ecosystem engineers": strong impact on plant community structure



# THREAT: Invasion of alien species

- \* Competition for nutrients, light, water, space, etc.
- \* Allelopathic interference.
- \* Dominance of invasive species  $\rightarrow$  Transition to communities with little relation to the original ones.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- \* Catastrophic changes in the successional trajectory.
- \* Effects of introducing a new species into a community?

Image: REPSA, UNAM.

#### Mathematical modelling

\* Focal species that govern the successional process: tepozán, palo loco, eucaliptus.

- \* Dynamic representation of key ecological interactions.
- \* Empirical observations using (limited) data from different sources.
- \* Deterministic and spatially homogeneous distribution.
- \* Resources and space are limited and constant.
- \* Variables  $\sim$  trees.
- \* Units: area projected by the canopy to the soil (ha).

[J. Acosta-Arreola, E. Domínguez-Hüttinger, P. Aguirre, N. González, J. A. Meave, Predicting dynamic trajectories of a protected plant community under contrasting conservation regimes: insights from data-based modelling. (submitted)]

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

#### The model



- \* Positive interaction between  $P_s$  y  $B_s$ .
- \*  $E_s$  has negative effect on both  $P_s$  and  $B_s$ .
- \*  $\alpha_{x_i}$ : reproductive rates;
- \*  $\beta_{\mathbf{x}_i}$ : death rates  $\rightarrow$  free up space;
- \*  $\gamma_{x_i}$ : Inhibition of growth by  $E_s$ ;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- \*  $\tau_{x_i}$ : Stimulation of growth;
- \*  $\mu_{x_i}$ : Stimulation of death;
- \* TS: Total space

## State space $(P_s, B_s, E_s)$



#### \* Multistability:

 $p_1$  ( $E_s$  survives, extinction of  $P_s$  and  $B_s$ )  $p_3$  ( $P_s$  and  $B_s$  survive,  $E_s$  dies out)  $p_0$ ,  $p_2$ ,  $p_4$ ,  $p_5$ : saddle points (unstable).

How to decide the asymptotic behavior  $(t \to \infty)$  if the state at t = 0 is not known with certainty?

#### Bistability: basins of attraction and separatrices (2D toy example)

#### Basin of attraction: set of all combinations of

(F, W)-values/concentrations/etc which, allow longterm convergence to a given equilibrium.



[D. Contreras-Julio, PA, J. Mujica & O. Vasilieva, Finding strategies to regulate propagation and containment of dengue via invariant manifold analysis, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 1392–1437.]

#### Stable manifold theorem



\* No analytic formulas for **global** manifolds \* Numerical methods

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

[Guckenheimer & Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, 1985.] Computation of 2D global invariant manifolds of an hyperbolic equilibrium



- A 2D global manifold as a solution family of BVPs (orbit segments).
- General setting:

$$\begin{split} \dot{\mathbf{u}}(t) - Tf(\mathbf{u}(t)) &= \mathbf{0}, \qquad \mathbf{u}, f(\cdot) \in \mathbb{R}^n. \\ \mathbf{u}(0) \in \Omega \subset E^s(p), \qquad |\mathbf{u}(0) - p| &= \delta. \\ \mathbf{u}(1) \in \Sigma. \end{split}$$
 Stable Manifold Theorem: Error  $\sim O(\delta^2).$ 

- Fixed integration time T < 0 (u(1) free).</p>
- Fixed arclength (integral condition).
- Method independent of system undergoing a bifurcation or not.
- Implementation in AUTO: Step size measures change of the entire computed orbit segment in state variables × parameters space. Highly accurate and fast.
- Also possible to obtain 2D manifolds of periodic orbits.

[Krauskopf & Osinga, Computing invariant manifolds via the continuation of orbit segments, in Numerical Continuation Methods for Dynamical Systems, B. Krauskopf, H. M. Osinga and J. Galán-Vioque, eds., Underst. Complex Syst., Springer-Verlag, New York, 2007.]

[Krauskopf, Osinga, Doedel, Henderson, Guckenheimer, Vladimirsky, Dellnitz & Junge, A survey of methods for computing (un)stable manifolds of vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15, 2005.] [PA, Doedel, Krauskopf & Osinga, Investigating the consequences of global bifurcations for two-dimensional manifolds of vector fields, Discr. Cont. Dyn. Syst. 29, 2011.]

## Stable manifold $W^{s}(p_{5})$ of $p_{5}$



\*  $W^s(p_5)$ : Separatrix between basins of attraction of  $p_1$  y  $p_3$ ; \* Solutions starting "above"  $W^s(p_5)$  converge to  $p_1$ ; \* Solutions starting "below"  $W^s(p_5)$  converge to  $p_3$ .

#### Basins of attraction: what if data is incomplete?

\*  $E_s = 8.2513$  (most recent recorded value). Ps and Bs: unknown !

\* We may still say something about the possible long term outcome.

\* Panel (d): Projection of  $\Sigma$  onto  $(P_s, B_s)$  plane.

\* 
$$w^s = W^s(p_5) \cap \Sigma$$
.

Also: Identification of regions sensitive to small variations of  $B_s$  or  $P_s$ .



・ロット (雪) ・ (日) ・ (日) ・ (日)

#### Design optimal strategies to cross separatrix.



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

\* Human actions to eradicate E<sub>s</sub> with minimum effort?

- 1) Moving down state beyond  $W^s(p_5) 
  ightarrow {\sf Cost}$  .
- 2) Let the system evolve towards  $p_3$ .

Next: Two simple examples.

Strategy 1

Cut down E<sub>s</sub>.

 $q_{90} \approx (0.08, 15.47, 8.94)$ State in 1990.

 $q_m \approx (0.08, 15.47, 4.03)$ Nearest point to  $q_{90}$  in  $W^s(p_5) \cap L$ .  $L = \{P_s = 0.08, B_s = 15.47\}.$ 

Numerical continuation: Minimise distance from  $q_{90}$  to  $W^s(p_5) \cap L$ .

 $q_n$ : "Just" below  $q_m$ .









## Strategy 2

Follow shortest path in state space.

 $q_{90} \approx (0.08, 15.47, 8.94)$ State in 1990.

 $q_m \approx (0.08, 16.08, 4.23)$ Nearest point to  $q_{90}$  in  $W^s(p_5)$ .

- $\rightarrow$  Cut  $E_s$  and plant  $B_s$
- $q_n$ : "Just" below  $q_m$ .



▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

## Conclusions y perspectives

- Model shows bistability: 2 native vs eucalyptus.
- Absence of interventions: Extinction of native species.
- Invariant manifold analysis:
  - $\rightarrow$  Size/shape/location basins of attraction.
  - $\rightarrow$  Useful info to design optimal strategies to cross separatrix.
- Idea of the best strategy for interventions: planting/cutting a particular type of tree might be much more efficient (cost-effective) than planting/cutting another one!
- Simple assumptions, tractable 3D model: allows analytical description, manages to capture observed qualitative properties of interaction.
- Model fitted with field data.... Insufficient but informative data.
- Problem modeled in the REPSA but that occurs in many ecosystems!
- Generalizable/adaptable to other species.
- Help in making decisions for managing reserves.



[J. Acosta-Arreola, E. Domínguez-Hüttinger, P. Aguirre, N. González, J. A. Meave, Predicting dynamic trajectories of a protected plant community under contrasting conservation regimes: insights from data-based modelling. (submitted)]