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Elisa Doḿınguez-Hüttinger Nicolás González M.
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San Ángel Pedregal Ecological Reserve (REPSA)

* Protected area in the central cam-
pus of the National Autonomous
University of Mexico (UNAM),
Mexico City.

* Urban reserve, 237.33 ha.

* Micro-environments (soil, humid-
ity and temperature) with their own
biodiversity.

* Scientific research and dissemina-
tion.

Image: REPSA, UNAM.



San Ángel Pedregal Ecological Reserve (REPSA)

“Ecosystem engineers”: strong impact on plant community structure



THREAT: Invasion of alien species
* Competition for nutrients, light, water, space, etc.
* Allelopathic interference.
* Dominance of invasive species → Transition to communities with little
relation to the original ones.
* Catastrophic changes in the successional trajectory.
* Effects of introducing a new species into a community?

Image: REPSA, UNAM.



Mathematical modelling

* Focal species that govern the successional process: tepozán, palo loco,
eucaliptus.

* Dynamic representation of key ecological interactions.

* Empirical observations using (limited) data from different sources.

* Deterministic and spatially homogeneous distribution.

* Resources and space are limited and constant.

* Variables ∼ trees.

* Units: area projected by the canopy to the soil (ha).

[J. Acosta-Arreola, E. Doḿınguez-Hüttinger, P. Aguirre, N. González, J. A. Meave, Predicting dynamic
trajectories of a protected plant community under contrasting conservation regimes: insights from data-based
modelling. (submitted)]



The model

dPs

dt
=

αPsPsFs(1 + τBPBs)

1 + γEPEs
− Ps(βPs + µEPEs), P. praecox (Palo loco)

dBs

dt
=

αBSBsFs

1 + γEBEs
− Bs(βBs + µEBEs), B. cordata (Tepozán)

dEs

dt
= αEsEsFs − βEsEs , E. camaldulensis (Eucalipto)

Fs(t) = TS − (Ps(t) + Bs(t) + Es(t)). Espacio libre (conservation eq.)

* Positive interaction between
Ps y Bs .
* Es has negative effect on both
Ps and Bs .
* αxi : reproductive rates;
* βxi : death rates → free up
space;
* γxi : Inhibition of growth by Es ;
* τxi : Stimulation of growth;
* µxi : Stimulation of death;
* TS : Total space



State space (Ps ,Bs ,Es)

* Multistability:
p1 (Es survives, extinction of Ps and Bs)
p3 (Ps and Bs survive, Es dies out)
p0, p2, p4, p5: saddle points (unstable).

How to decide the asymptotic behavior (t →∞) if the state at t = 0 is
not known with certainty?



Bistability: basins of attraction and separatrices (2D toy example)

Basin of attraction: set of all combinations of
(F ,W )-values/concentrations/etc which, allow longterm convergence to a
given equilibrium.

[D. Contreras-Julio, PA, J. Mujica & O. Vasilieva, Finding strategies to regulate propagation and containment of
dengue via invariant manifold analysis, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 1392–1437.]



Stable manifold theorem

x0 hyperbolic equilibrium of ẋ = f (x), x ∈ Rn:

-f (x0) = 0
-Df (x0): no eigenvalues with Reλ = 0.

W s(x0) = {x ∈ Rn|Φt(x) −→ x0 as t −→∞},
W u(x0) = {x ∈ Rn|Φt(x) −→ x0 as t −→ −∞}.

I W s,u(x0) are immersed manifolds in Rn and
invariant under Φt .

I dimW s(x0) = dimE s(x0),
dimW u(x0) = dimE u(x0).

I Tx0W
s(x0) = E s(x0),

Tx0W
u(x0) = E u(x0).

[Guckenheimer & Holmes, Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields, Springer, 1985.]
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* No analytic formulas for global manifolds
* Numerical methods



Computation of 2D global invariant manifolds of an hyperbolic equilibrium

(a)

p
u(0)

u(1)

v

u

(b)

p

u(0)

u(1)

v1

v2

Σ

u

I A 2D global manifold as a solution family of BVPs (orbit segments).

I General setting:

I u̇(t)− Tf (u(t)) = 0, u, f (·) ∈ Rn .

u(0) ∈ Ω ⊂ E s (p), |u(0)− p| = δ. Stable Manifold Theorem: Error ∼ O(δ2).

u(1) ∈ Σ.

I Fixed integration time T < 0 (u(1) free).
I Fixed arclength (integral condition).

I Method independent of system undergoing a bifurcation or not.

I Implementation in Auto: Step size measures change of the entire computed orbit segment in state
variables × parameters space. Highly accurate and fast.

I Also possible to obtain 2D manifolds of periodic orbits.

[Krauskopf & Osinga, Computing invariant manifolds via the continuation of orbit segments, in Numerical
Continuation Methods for Dynamical Systems, B. Krauskopf, H. M. Osinga and J. Galán-Vioque, eds., Underst.
Complex Syst., Springer-Verlag, New York, 2007.]
[Krauskopf, Osinga, Doedel, Henderson, Guckenheimer, Vladimirsky, Dellnitz & Junge, A survey of methods for
computing (un)stable manifolds of vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15, 2005.]
[PA, Doedel, Krauskopf & Osinga, Investigating the consequences of global bifurcations for two-dimensional
manifolds of vector fields, Discr. Cont. Dyn. Syst. 29, 2011.]



Stable manifold W s(p5) of p5

* W s(p5): Separatrix between basins of attraction of p1 y p3;
* Solutions starting “above” W s(p5) converge to p1;
* Solutions starting “below” W s(p5) converge to p3.



Basins of attraction: what if data is incomplete?

* Es = 8.2513 (most re-
cent recorded value).
Ps and Bs: unknown !

* We may still say some-
thing about the possible
long term outcome.

* Panel (d): Projection
of Σ onto (Ps ,Bs) plane.

* w s = W s(p5) ∩ Σ.

Also: Identification of
regions sensitive to small
variations of Bs or Ps .
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Design optimal strategies to cross separatrix.

* Human actions to eradicate Es with minimum effort?

1) Moving down state beyond W s(p5) → Cost .
2) Let the system evolve towards p3.

Next: Two simple examples.



Strategy 1

Cut down Es .

q90 ≈ (0.08, 15.47, 8.94)
State in 1990.

qm ≈ (0.08, 15.47, 4.03)
Nearest point to q90 in
W s(p5) ∩ L.
L = {Ps = 0.08, Bs = 15.47}.

Numerical continuation:
Minimise distance from
q90 to W s(p5) ∩ L.

qn: “Just” below qm.
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Strategy 2

Follow shortest path in
state space.

q90 ≈ (0.08, 15.47, 8.94)
State in 1990.

qm ≈ (0.08, 16.08, 4.23)
Nearest point to q90 in
W s(p5).

→ Cut Es and plant Bs

qn: “Just” below qm.
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Conclusions y perspectives

I Model shows bistability: 2 native vs eucalyptus.

I Absence of interventions: Extinction of native
species.

I Invariant manifold analysis:
→ Size/shape/location basins of attraction.
→ Useful info to design optimal strategies to cross
separatrix.

I Idea of the best strategy for interventions:
planting/cutting a particular type of tree might be
much more efficient (cost-effective) than
planting/cutting another one!

I Simple assumptions, tractable 3D model:
allows analytical description, manages to capture
observed qualitative properties of interaction.

I Model fitted with field data.... Insufficient but
informative data.

I Problem modeled in the REPSA but that occurs in
many ecosystems!

I Generalizable/adaptable to other species.

I Help in making decisions for managing reserves.

[J. Acosta-Arreola, E. Doḿınguez-Hüttinger, P. Aguirre, N. González, J. A. Meave, Predicting dynamic
trajectories of a protected plant community under contrasting conservation regimes: insights from data-based
modelling. (submitted)]


