Nematic liquid crystals: well posedness, optical solitons and control

J. P. Borgna, P. Panayotaros, D. Rial, C. S. de la Vega

LACIAM 2023

January 1sr, 2023

Introduction

Previous Results Optimal Control model Future work Experimental device The mathematical models

- Experimental device
- The mathematical models

2 Previous Results

- Linear model
- Pre-tilted nematicon model
- Full nematicon model
- Optimal Control model
 - Well posedness and regularity
 - Existence of minimum
 - First order necessary conditions

Future work

Experimental device The mathematical models

Nematic Liquid Crystals

Incremento de Temperatura

Experimental device The mathematical models

Experimental device The mathematical models

Full Nematicon Model

Wave envelope: $u = A/E_b$ and deflection angle: $\theta = \psi - \theta_0$

$$\begin{cases} iu_{z} = -\frac{1}{2}\nabla_{x}^{2}u - \gamma(\sin^{2}(\theta_{0} + \theta) - \sin^{2}(\theta_{0}))u, \\ \nu \nabla_{x}^{2}\theta = \frac{1}{2}E_{b}^{2}\sin(2\theta_{0}) - \frac{1}{2}(E_{b}^{2} + |u|^{2})\sin(2(\theta_{0} + \theta)). \end{cases}$$
(1)

Peccianti, M., De Rossi, A., Assanto, G., De Luca, A., Umeton, C. and Khoo IC. Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells. *Applied Physics Letters*. 2000.

Experimental device The mathematical models

Pretilt nematicon model

Assuming $\theta_0 \sim \pi/4$, $|\theta| \ll 1$, q > 0 depending on θ_0 , we have the simpler nonlinear model:

$$\begin{cases} iu_z + \frac{1}{2}\nabla^2 u + \sin(2\theta)u = 0, \\ \nu \nabla^2 \theta - q\sin(2\theta) + 2|u|^2\cos(2\theta) = 0. \end{cases}$$
(2)

In this model it is assumed that the bias electric field is constant.

Experimental device The mathematical models

The linear model

Panayotaros, P. and Marchant, TR. Solitary waves in nematic liquid crystals. *Physica D: Nonlinear Phenomena*. 2014.

Considering $|\theta| \ll 1$, then $\cos(2\theta) \approx 1$ and $\sin(2\theta) \approx 2\theta$.

$$\begin{cases} iu_z + \frac{1}{2}\nabla^2 u + 2\theta u = 0, \\ \nu \nabla^2 \theta - 2q\theta + 2|u|^2 = 0, \end{cases}$$
(3)

where q, ν are positive constants, $x \in \mathbb{R}^2$.

Linear model Pre-tilted nematicon model Full nematicon model

1 Introduction

- Experimental device
- The mathematical models

2 Previous Results

- Linear model
- Pre-tilted nematicon model
- Full nematicon model

Optimal Control model

- Well posedness and regularity
- Existence of minimum
- First order necessary conditions

Future work

Linear model Pre-tilted nematicon model Full nematicon model

Nematicon lineal model

• Equation on θ can be solved

$$\theta(u) = G(|u|^2)(x) = \frac{2}{\nu} \int_{\mathbb{R}^2} N_0(\sqrt{2q/\nu}(x-y))|u(y)|^2 dy$$

N₀: Modified Bessel function.

• Equation on *u* satisfies

$$iu_z + \frac{1}{2}\nabla^2 u + 2G(|u|^2)u = 0, \ u(0) = u_0$$

Well posedness (global existence, uniqueness and continuous dependence):

$$u \in C(\mathbb{R}, H^1(\mathbb{R}^2)) \cap C^1(\mathbb{R}, H^{-1}(\mathbb{R}^2)).$$

 Existence of the stationary solutions u(x, z) = e^{-iωz}φ(x), with ||φ||_{L²} > a₀.

Linear model Pre-tilted nematicon model Full nematicon model

Pre-tilted nematicon model

Borgna, J.P. and Panayotaros, P. and Rial, D and Sánchez de la Vega, C. Optical solitons in nematic liquid crystals: model with saturation effects. *Nonlinearity*. 2018.

We analyze the nonlinear system (2):

$$\begin{cases} iu_z + \frac{1}{2}\nabla^2 u + \sin(2\theta)u = 0, \\ \nu\nabla^2\theta - \mathbf{q}\sin(2\theta) + 2|u|^2\cos(2\theta) = 0, \end{cases}$$

 $u(x,z=0)=u_0(x)$ for $x\in\mathbb{R}^2$,

assuming $heta_0 \sim \pi/4$, $| heta| \ll 1$, q > 0 depending on $heta_0$.

Linear model Pre-tilted nematicon model Full nematicon model

Results

- Director angle equation: We prove the existence of $\theta = \theta(u)$ and uniqueness of director angle equation.
- Replacing $\theta(u)$ into the nonlinear Schrödinger equation, we solve de following initial value problem:

$$iu_z + \frac{1}{2} \nabla^2 u + \sin(2\theta(u))u = 0, \quad u(x, z = 0) = u_0(x).$$

- Well posedness.
- Existence of stationary solutions for laser power above a threshold.
- Saturation effect: $0 \le \theta \le \pi/4$ and if $||u||_{L^{\infty}} \to \infty$, then

 $\theta \rightarrow \pi/4$

Linear model Pre-tilted nematicon model Full nematicon model

Full nematicon model

Borgna, J.P. and Panayotaros, P. and Rial, D and Sánchez de la Vega, C. Optical solitons in nematic liquid crystals: arbitrary deviation angle model. *Physica D: Nonlinear Phenomena*. 2020.

$$\begin{cases} iu_{z} = -\frac{1}{2}\nabla^{2}u - \gamma(\sin^{2}(\theta_{0} + \theta) - \sin^{2}(\theta_{0}))u, \\ \nu\nabla^{2}\theta = \frac{1}{2}E_{b}^{2}\sin(2\theta_{0}) - \frac{1}{2}(E_{b}^{2} + |u|^{2})\sin(2(\theta_{0} + \theta)). \end{cases}$$

 $u(x,z=0)=u_0(x)$ for $x\in\mathbb{R}^2$,

 $E_b > 0$, $\theta_0 \in (\pi/4, \pi/2)$ and no assumptions on the size of θ .

Linear model Pre-tilted nematicon model Full nematicon model

Results

- Well posedness.
- Existence of stationary solutions.
- Saturation effect: $0 \le \theta \le \pi/2 \theta_0$ and if $||u||_{L^{\infty}} \to \infty$, then

 $\theta + \theta_0 \rightarrow \pi/2.$

Well posedness and regularity Existence of minimum First order necessary conditions

1 Introduction

- Experimental device
- The mathematical models

2 Previous Results

- Linear model
- Pre-tilted nematicon model
- Full nematicon model
- Optimal Control model
 - Well posedness and regularity
 - Existence of minimum
 - First order necessary conditions

Future work

Well posedness and regularity Existence of minimum First order necessary conditions

The device

Well posedness and regularity Existence of minimum First order necessary conditions

The optimal control model

We analyze the optimal control problem

$$\mathcal{J}_{\star} = \inf_{q \in \mathcal{Q}_{\mathsf{ad}}} \mathcal{J}(q)$$

where $\mathcal{J}(q) = \|u[q](\zeta) - u_1\|_{L^2}^2 + \kappa \|\dot{q}\|_{L^2([0,\zeta])}^2$ and (q, θ, u) satisfy system (3):

$$\begin{cases} iu_z + \frac{1}{2}\nabla^2 u + 2\theta u = 0, \\ \nu \nabla^2 \theta - 2q(z)\theta + 2|u|^2 = 0, \end{cases}$$

$$\tag{4}$$

 $u(x, z = 0) = u_0(x)$ for $x \in \mathbb{R}^2$ and $\mathcal{Q}_{\mathrm{ad}} = \{q \in H^1([0, \zeta]) : q(0) = q_0 \text{ and } m \le q(z) \le M \text{ for all } z\}.$

Well posedness and regularity Existence of minimum First order necessary conditions

Results

We proved:

- Well posedness and regularity.
- Existence of a minimum.
- First order necessary conditions.

Well posedness and regularity Existence of minimum First order necessary conditions

Well posedness

• We define $\Theta : [m, M] \times H^1(\mathbb{R}^2) \to H^2(\mathbb{R}^2)$, where $\theta = \Theta(q, u)$ is the unique solution of the elliptic equation:

$$\nu \nabla^2 \theta - 2q\theta + 2|u|^2 = 0.$$

- Θ is locally Lipschitz continuous.
- Given $q \in \mathcal{Q}$, $u \in C([0, \zeta], H^1(\mathbb{R}^2))$, we have

$$heta(z) = \Theta(q(z), u(z)) \in C([0, \zeta], H^2(\mathbb{R}^2)).$$

• For the initial value problem with $u(0) = u_0 \in H^1(\mathbb{R}^2)$

$$iu_z+\frac{1}{2}\nabla^2 u+2\Theta(q,u)u=0,$$

we prove the existence of a unique solution globally defined.

Well posedness and regularity Existence of minimum First order necessary conditions

Well posedness

Theorem

Given $q \in Q$, the initial value problem for (4) with $u(0) = u_0 \in H^1(\mathbb{R}^2)$ has a unique solution

$$\begin{split} u[q, u_0] &\in C([0, \zeta], H^1(\mathbb{R}^2)) \cap C^1([0, \zeta], H^{-1}(\mathbb{R}^2)) \\ \theta[q, u_0] &\in C([0, \zeta], H^2(\mathbb{R})). \end{split}$$

Moreover, u is locally Lipschitz continuous.

Well posedness and regularity Existence of minimum First order necessary conditions

Regularity of the solution

Theorem

 $\Theta(q, u)$ is Fréchet differentiable with respect to q and u.

Theorem

Given $u_0 \in H^1(\mathbb{R}^2)$ and $q \in Q_{ad}$, let $\theta \in C([0, \zeta], H^2(\mathbb{R}^2))$ and $u \in C([0, \zeta], H^1(\mathbb{R}^2))$ solution of the coupled system. Then u is Fréchet differentiable and $D_q u[q](\delta q) \in C([0, \zeta], H^1(\mathbb{R}^2))$.

Well posedness and regularity Existence of minimum First order necessary conditions

Existence of minimum

Theorem

There exists an optimal control $q^* \in Q_{ad}$.

Sketch of the proof:

Given $q_n \in \mathcal{Q}$ a minimizer's sequence, let $u_n = u[q_n]$ and $\theta_n = \theta[q_n]$ where $\|\dot{q}_n\|_{L^2[0,\zeta]}$ are uniformly bounded. Then, $q_n \Rightarrow q^*$ in $C[0,\zeta]$, $u_n \to u^*$ in $L^2([0,\zeta], L^2_{loc}(\mathbb{R}^2))$ and $\theta_n \rightharpoonup \theta^*$ in $L^2([0,\zeta], H^2(\mathbb{R}^2))$. Passing to the limit the equations

$$\begin{cases} i(u_n)_z + \frac{1}{2}\nabla^2 u_n + 2\theta_n u_n = 0, \\ \\ \nu \nabla^2 \theta_n - 2q_n \theta_n + 2|u_n|^2 = 0, \end{cases}$$

we obtain $q^* \in \mathcal{Q}_{ad}$ is a minimum.

J. P. Borgna, P. Panayotaros, D. Rial, C. S. de la Vega Nematic Liquid Crystals

Well posedness and regularity Existence of minimum First order necessary conditions

First order necessary conditions

Recall

$$\mathcal{J}(q) = \|u[q](\zeta) - u_1\|_{L^2}^2 + \kappa \|\dot{q}\|_{L^2(\mathbb{R})}^2.$$

We can prove that ${\mathcal J}$ is Fréchet differentiable and

$$\begin{aligned} \mathcal{J}'(q)(\delta q) &= 2\langle u[q](\zeta) - u_1, D_q u[q](\zeta)(\delta q) \rangle_{L^2} + 2\kappa \langle \dot{q}, \dot{\delta q} \rangle_{L^2[0,\zeta]} \\ &= 2\langle (D_q u[q](\zeta))^* (u[q](\zeta) - u_1), \delta q \rangle_{L^2[0,\zeta]} + 2\kappa \langle \dot{q}, \dot{\delta q} \rangle_{L^2[0,\zeta]} \\ &= 2\left((D_q u[q](\zeta))^* (u[q](\zeta) - u_1) - \kappa \frac{d}{dt} \dot{q} \right) (\delta q) \end{aligned}$$

Well posedness and regularity Existence of minimum First order necessary conditions

Adjoint system

We define

$$T: H^{1}([0,\zeta]) \longrightarrow H^{1}(\mathbb{R}^{2})$$

$$\delta q \longrightarrow D_{q}u[q](\delta q)(\zeta)$$

Then, we characterize the dual operator

$$T^*: H^{-1}(\mathbb{R}^2) \longrightarrow H^{-1}([0,\zeta]))$$

restricted to $H^1(\mathbb{R}^2)$, $T^*(p_\zeta) = -\langle y, \theta \rangle_{L^2(\mathbb{R}^2)} \in L^2[0, \zeta]$ where

$$p_{z} = i\frac{1}{2}\nabla^{2}p(z) + 2\theta p(z) - 2uy$$
$$p(\zeta) = p_{\zeta}$$
$$-\nu\nabla^{2} y + qy = -2\operatorname{Re}(\bar{u}p)$$

Well posedness and regularity Existence of minimum First order necessary conditions

First order necessary conditions

Theorem

Let $q^* \in Q_{ad}$ be an optimal solution and $u^* = u[q^*], \theta^* = \theta[q^*]$. Then, $p \in C([0, \zeta], H^1(\mathbb{R}^2)) \cap C^1([0, \zeta], H^{-1}(\mathbb{R}^2)), y \in C([0, \zeta], H^2(\mathbb{R}^2))$ $iu_z^{\star} = -\frac{1}{2}\nabla^2 u^{\star} - 2u^{\star}\theta^{\star},$ $\nu \nabla^2 \theta^\star - \boldsymbol{a}^\star \theta^\star = -|\boldsymbol{u}^\star|^2$ $u^{*}(0) = u_{0}$ $ip_z = -\frac{1}{2}\nabla^2 p(z) + 2ip\theta^* + 2iu^*y$ $\nu \nabla^2 \mathbf{v} - \mathbf{a}^* \mathbf{v} = 2 \operatorname{Re}(\bar{\mathbf{u}}^* \mathbf{p})$ $p(\zeta) = u^*(\zeta) - u_1$ $\left(\langle y, \theta^{\star}
angle_{L^{2}} + rac{d}{dz} \dot{q^{\star}}
ight) (\delta q) \leq 0 ext{ for all } q \in \mathcal{Q}_{ad}$ where the last inequality is in the distributional sense.

J. P. Borgna, P. Panayotaros, D. Rial, C. S. de la Vega Nematic Liquid Crystals

1 Introduction

- Experimental device
- The mathematical models

2 Previous Results

- Linear model
- Pre-tilted nematicon model
- Full nematicon model

3 Optimal Control model

- Well posedness and regularity
- Existence of minimum
- First order necessary conditions

Future work

Future work

- Characterization of an optimal control.
- Numerical approximation.
- Generalization to the more complete models.
- Controllability.

Gracias!

J. P. Borgna, P. Panayotaros, D. Rial, C. S. de la Vega Nematic Liquid Crystals