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Systems with di�erent time-scales

• Many natural phenomena feature interaction of processes on di�erent times scales.

• A lot of di�iculties appear. For instance, huge cost in numerical simulations since
the fastest time scale sub-system must be fully solved over a timespan of the
slowest scales’ order.

• Desirable: we want instead solve a limit system, describing approximately the full
behavior when some parameters (representing the scales) go to zero (or infinity)
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Problem statement

Consider the following coupled system with di�erent time-scales

εyt + yx + yxxx = 0, (t, x) ∈ R+ × [0, L],

y(t, 0) = y(t, L) = 0, t ∈ R+,

yx(t, L) = az(t), t ∈ R+,

y(0, x) = y0(x), x ∈ [0, L],

ż(t) = bz(t) + cyx(t, 0), t ∈ R+,

z(0) = z0,

a, b, c ∈ R, ε > 0 is supposed to be small.

�estions

1. What are the conditions on a, b, c such that the coupled system is stable ? Do
these conditions change when ε is small ?

2. What is the behavior of the solutions w.r.t. small ε ?
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A finite-dimensional example

A finite-dimensional example

{
εẏ = ay(t) + bz(t)

ż = cz(t) + dy(t).

with a, b, c, d ∈ R.

Because of ε, the dynamics of y is supposed to be faster than the one of z⇒
hence, we fix a < 0 !

Lyapunov function

V (y, z) =
1

2
εy2 + |εMy − z|2,

with M ∈ R to be selected. This Lyapunov function is inspired by the forwarding
approach [Mazenc & Praly, 1996].
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Conditions on a, b, c, d (1)

V̇ (y, z) = ay2 + bzy + (May +Mbz − cz − dy)(εMy − z)

Let us choose M such that Ma = d. Hence,

V̇ (y, z) = ay2 + bzy +

((
bd

a
− c
)
z

)
(εMy − z)

Then, using Young’s inequalities:

V̇ (y, z) ≤(a+ α1 +M2α2)y2

+

(
ε2

α2

(
bd

a
− c
)2

−
(
bd

a
− c
)

+
b2

α1

)
z(t)2

E. Cerpa (UC Chile) Singular perturbation analysis for a KdV-ODE system 5 / 30



Conditions on a, b, c, d (2)

V̇ (y, z) =(a+ α1 +M2α2)y2

+

(
ε2

α2

(
bd

a
− c
)2

−
(
bd

a
− c
)

+
b2

α1

)
z2

Choice of a, b, c, d

1. a < 0 and α1, α2 su�iciently small so that a+ α1 +M2α2 < 0

2. b su�iciently small, (a, d, c) satisfying k1 < bd
a
− c < k2, with suitable k1, k2 > 0

so that the polynomial ε
2

α2
X2 −X + b2

α1
is always negative.

�estion

If one assumes ε su�iciently small, do the conditions change ?

E. Cerpa (UC Chile) Singular perturbation analysis for a KdV-ODE system 6 / 30



The singular perturbation principle

The singular perturbation principle consists in decoupling the coupled system into
two approximated systems:

1. The reduced order system ' slower system
2. The boundary layer system ' faster system

�estion

How can one compute these two systems ?
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Approximated systems: reduced order system

Recall that: {
εẏ = ay(t) + bz(t)

ż = cz(t) + dy(t).

Reduced order system

Suppose that ε = 0. Then, ay + bz = 0⇒ y = − b
a
z, which is called the

equilibrium point.
Then, replacing y by the equilibrium point in the z-dynamics, the reduced order
system reads

˙̄z =

(
c− bd

a

)
z̄.
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Approximated systems: boundary layer system

Recall that: {
εẏ = ay(t) + bz(t)

ż = cz(t) + dy(t).

Boundary layer system

Set τ = t
ε

and ȳ = y + b
a
z. Then,

d

dτ
ȳ =

d

dτ
y +

b

a
ε
d

dt
z = a

(
y +

b

a
z

)
+
b

a
ε
d

dt
z

Taking ε = 0, one obtains:
d

dτ
ȳ = aȳ.

E. Cerpa (UC Chile) Singular perturbation analysis for a KdV-ODE system 9 / 30



Stability conditions

Approximated systems

The reduced order system is

˙̄z =

(
c− bd

a

)
z̄.

The boundary layer system is
d

dτ
ȳ = aȳ.

Stability conditions

If a < 0 and
(
c− bd

a

)
< 0, then both systems are stable.

�estion

If ε is small enough, do these conditions hold for the full-system ?
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Change of coordinates

Consider the following change of coordinates:

ỹ = y +
b

a
z,

where − b
a
z is the equilibrium point.

Then, the full-system can be wri�en equivalently as
ε ˙̃y = aỹ + ε

b

a

((
c− bd

a

)
z + dỹ

)
,

ż =

(
c− bd

a

)
z + dỹ
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Lyapunov function

Using the Lyapunov function

V (ỹ, z) :=
1

2
εỹ + |εMỹ − z|2

one can find ε∗ such that, for any ε ∈ (0, ε∗), and for any a, b, c, d ∈ R satisfying
a < 0 and c− bd

a
< 0, there exist µ1, µ2 > 0 such that

V̇ (ỹ, z) ≤ −µ1ỹ
2 − µ2z

2.

E. Cerpa (UC Chile) Singular perturbation analysis for a KdV-ODE system 12 / 30



Generalities

Consider general linear systems:{
εẏ = Ay +Bz,

ż = Cz +Dy,

with y ∈ Rn, z ∈ Rm and the matrices A,B,C,D of appropriate dimension.

Result
For su�iciently small ε, the conditions for the reduced order system and the
boundary layer system to be stable hold for the full-system.

Such a result can be found for instance in [Kokotović, Khalil, O’Reilly, 1986]. The
strategy for linear systems relies on a frequency approach. Nonlinear version can
be found in [Khalil, 2000].

�estion

What about the infinite-dimensional case ?
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Existing results and counter-example

Very few results exist for the infinite-dimensional se�ing:
[Tang, Prieur, Girard, 2015 and 2016],
[Tang, Mazanti, 2017],
[Cerpa, Prieur, 2020].

These results focus on a particular class of systems, namely hyperbolic systems
coupled with ODEs.
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Existing results and counter-example

Counter-example


εẏ(t) = −0.1y(t)− z(1, t)
zt(t, x) + zx(t, x) = 0

z(0, t) = 2z(1, t) + 0.2y(t).

The reduced order system is given by{
z̄t(t, x) + z̄x(t, x) = 0

z̄(0, t) = 0

and the boundary layer system reads

d

dτ
ȳ(τ) = −0.1ȳ(τ).

Both systems are always exponentially stable. But the full-system is not (proof
based on the method of characteristics).
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Coupled system

Let us go back to the KdV equation coupled with an ODE

εyt + yx + yxxx = 0, (t, x) ∈ R+ × [0, L],

y(t, 0) = y(t, L) = 0, t ∈ R+,

yx(t, L) = az(t), t ∈ R+,

y(0, x) = y0(x), x ∈ [0, L],

ż(t) = bz(t) + cyx(t, 0), t ∈ R+,

z(0) = z0.

Here, the fast system is the KdV equation. It should be exponentially stable
without coupling as in the finite-dimensional case.

�estion

What are the stability conditions for a single KdV equation ?
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Critical length: exponential stability


yt + yx + yxxx = 0, (t, x) ∈ R+ × [0, L],

y(t, 0) = y(t, L) = 0, t ∈ R+,

yx(t, L) = 0, t ∈ R+,

y(0, x) = y0(x), x ∈ [0, L].

Theorem (Rosier, 1997)

If L /∈ N , with

N :=

{
2π

√
k2+kl+l2

3
: k, l ∈ N

}
,

The equilibrium point 0 is exponentially stable for the KdV equation.

Moreover, if L ∈ N , we may loose the observability property of the output
yx(t, 0).
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Critical length: exponential stability


yt + yx + yxxx = 0, (t, x) ∈ R+ × [0, L],

y(t, 0) = y(t, L) = 0, t ∈ R+,

yx(t, L) = 0, t ∈ R+,

y(0, x) = y0(x), x ∈ [0, L].

Example

The energy E(y) = 1
2
‖y‖2L2(0,L) satisfies

d

dt
E(y) = −|yx(t, 0)|2.

With L = 2π and y0(x) = 1− cos(x), one has

y(t, x) = 1− cos(x).

Thus, yx(t, 0) = 0, which implies that E(y) = E(y0).
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Critical length: exponential stability


yt + yx + yxxx = 0, (t, x) ∈ R+ × [0, L],

y(t, 0) = y(t, L) = 0, t ∈ R+,

yx(t, L) = 0, t ∈ R+,

y(0, x) = y0(x), x ∈ [0, L].

For the nonlinear KdV equation:
yt + yx + yxxx + yyx = 0, (t, x) ∈ R+ × [0, L],

y(t, 0) = y(t, L) = 0, t ∈ R+,

yx(t, L) = 0, t ∈ R+,

y(0, x) = y0(x), x ∈ [0, L],

one can prove the asymptotic stability of the origin for some L ∈ N ([Tang et al.,
2017], [Nguyen, 2020]).
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Input-to-State stability


yt + yx + yxxx = d1(t, x), (t, x) ∈ R+ × [0, L],

y(t, 0) = y(t, L) = 0, t ∈ R+,

yx(t, L) = d2(t), t ∈ R+,

where d1 and d2 are perturbations.

Theorem (Balogoun, Marx, Astolfi, 2022)

Suppose L /∈ N . Then, there exists an ISS Lyapunov functional
W : L2(0, L)→ L2(0, L) for the KdV equation, i.e. there exist positive constants
c, c, λ, κ1, κ2, κ3 such that

c‖y‖2L2(0,L) ≤W (y) ≤ c‖y‖2L2(0,L)

and

Ẇ (y) ≤− λ‖y‖2L2(0,L) + κ1‖d1(t, ·)‖2L2(0,L) + κ2|d2(t)|2

− κ3|yx(t, 0|2
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Strategy

In the following, we will:

• Follow the same procedure as for the finite-dimensional system;

• Use the Lyapunov functional W given by the last theorem.

E. Cerpa (UC Chile) Singular perturbation analysis for a KdV-ODE system 18 / 30



Main results



εyt + yx + yxxx = 0, (t, x) ∈ R+ × [0, L],

y(t, 0) = y(t, L) = 0, t ∈ R+,

yx(t, L) = az(t), t ∈ R+,

y(0, x) = y0(x), x ∈ [0, L],

ż(t) = bz(t) + cyx(t, 0), t ∈ R+,

z(0) = z0.

Proposition (Marx and C., 2023)

For any ε > 0, there exist a∗, k1, k2 such that if a < a∗ and b, c satisfy
k1 < ac− b < k2, then the origin is globally exponentially stable.

This result can be seen as a sort of generalization of one of the result in [Balogoun,
Marx, Astolfi, 2022], where b = 0 and c = 1.
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Main results



εyt + yx + yxxx = 0, (t, x) ∈ R+ × [0, L],

y(t, 0) = y(t, L) = 0, t ∈ R+,

yx(t, L) = az(t), t ∈ R+,

y(0, x) = y0(x), x ∈ [0, L],

ż(t) = bz(t) + cyx(t, 0), t ∈ R+,

z(0) = z0.

Theorem (Marx and C., 2023)

For any a, b, c ∈ R such that (b− ac) < 0, there exists ε∗ such that, for any
ε ∈ (0, ε∗), the origin is globally exponentially stable.

We will see that the singular perturbation method applies for the coupled
KdV-ODE system !
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Reduced order system

Suppose that ε = 0. Then,
hx + hxxx = 0, (t, x) ∈ R+ × [0, L],

h(t, 0) = h(t, L) = 0, t ∈ R+,

hx(t, L) = az(t), t ∈ R+.

There exists an explicit solution to this problem:

h(t, x) = −2az(t)f(x),

with f(x) = 1

sin(L
2 )

sin
(
x
2

)
sin
(
L−x
2

)
. Note that hx(t, 0) = −az(t), then

replacing in ż = bz(t, 0) + cyx(t, 0) yx(t, 0) by −az, one obtains

Reduced order system

˙̄z(t) = (b− ac)z̄(t).

If (b− ac) < 0, then this system is exponentially stable !

E. Cerpa (UC Chile) Singular perturbation analysis for a KdV-ODE system 20 / 30



Boundary layer system

Set τ = t
ε

. A�er some computations similar to the finite-dimensional case, one
obtains:

Boundary layer system


yτ + yx + yxxx = 0,

y(τ, 0) = y(τ, L) = 0,

yx(τ, L) = 0.

If L /∈ N , the system is exponentially stable !
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Lyapunov functional

As for the finite-dimensional case, we will follow a forwarding approach, i.e. we
consider

V (y, z) = εW (y) +
1

2
(εMy − z)2,

which is the same Lyapunov functional as in [Balogoun, Marx, Astolfi, 2020]. The
operatorM is an integral operator, i.e.

My =

∫ L

0

M(x)y(x)dx,

where M is the solution to 
M ′′′(x) +M ′(x) = 0,

M(0) = M(L) = 0,

M ′(0) = −c,

with M(x) = −f(x)c.
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Time-derivative of the Lyapunov functional

Recall that: 

εyt + yx + yxxx = 0, (t, x) ∈ R+ × [0, L],

y(t, 0) = y(t, L) = 0, t ∈ R+,

yx(t, L) = az(t), t ∈ R+,

y(0, x) = y0(x), x ∈ [0, L],

ż(t) = bz(t) + cyx(t, 0), t ∈ R+,

z(0) = z0.

Using the ISS Lyapunov functional

Seeing az(t) as a perturbation, one has

εẆ (y) ≤ −λ‖y‖2L2(0,L) + κ2a
2z(t)2
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Time-derivative of the Lyapunov functional

Recall that: 

εyt + yx + yxxx = 0, (t, x) ∈ R+ × [0, L],

y(t, 0) = y(t, L) = 0, t ∈ R+,

yx(t, L) = az(t), t ∈ R+,

y(0, x) = y0(x), x ∈ [0, L],

ż(t) = bz(t) + cyx(t, 0), t ∈ R+,

z(0) = z0.

Di�erentiating the other term

Integration by parts + M + Young’s inequality

d

dt

1

2

(
ε

∫ L

0

M(x)y(t, x)dx− z(t)
)2

≤

(b− ac)z(t)2 + αε2‖M‖2L2(0,L)‖y‖
2
L2(0,L) +

(b− ac)2

α
z(t)2
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Time-derivative of the Lyapunov functional

One finally has:

V̇ (y, z) ≤(−λ+ αε2‖M‖2L2(0,L))‖y‖
2
L2(0,L)

+

(
(b− ac)2

α
+ (b− ac) + κ2a

2

)
z(t)2

Choose
• α so that −λ+ αε2‖M‖2L2(0,L) < 0

• a su�iciently small and k1 < (ac− b) < k2, k1, k2 > 0, so that the polynomial
X2

α
−X + κ2a

2 is always negative.
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Small ε: change of coordinates

We consider
ỹ(t, x) = y(t, x) + 2f(x)az(t)

One obtains 
εỹt + ỹx + ỹxxx = −ε((b− ac)z(t) + cỹx(t, 0))f(x)

ỹ(t, 0) = ỹ(t, L) = 0

ỹx(t, L) = 0

ż = (b− ac)z + cỹx(t, 0).

Using the same Lyapunov functional as before, one obtains the desired result !
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Tikhonov theorem


εyt + yx + yxxx = 0, (t, x) ∈ R+ × [0, L],

y(t, 0) = y(t, L) = 0, t ∈ R+,

yx(t, L) = az(t), t ∈ R+,

ż(t) = bz(t) + cyx(t, 0), t ∈ R+,

Theorem (Marx and C., 2023)

There exist a∗, k1, k2, ε∗, µ > 0 such that if a < a∗, b, c satisfy
0 < k1 < −(b− ac) < k2 and ε < ε∗, then with any initial condition satisfying

‖y0 − ȳ0 + fz0‖L2(0,L) + |z0 − z̄0| = O(ε
3
2 ), |z̄0| = O(ε

1
2 )

‖ȳ0‖L2(0,L) = O(ε
3
2 ),

one has

‖y(t, ·)− ȳ(t/ε, ·) + f(·)z(t)‖L2(0,L) + |z(t)− z̄(t)| = O(ε)e−µt.
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Optional What about the fast ODE?


yt + yx + yxxx = 0, (t, x) ∈ R+ × [0, L],

y(t, 0) = y(t, L) = 0, t ∈ R+,

yx(t, L) = az(t), t ∈ R+,

εż(t) = bz(t) + cyx(t, 0), t ∈ R+,

�estion

Does the singular perturbation method apply for the case where the ODE is fast ?

Answer: yes, but some adjustments need to be done !
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Optional Approximated systems

Reduced order system

Set ε = 0, one has z(t) = − c
b
yx(t, 0).
ȳt + ȳx + ȳxxx = 0

ȳ(t, 0) = ȳ(t, L) = 0

ȳx(t, L) = −ac
b
ȳx(t, 0).

Boundary layer system

d

dτ
z̄(τ) = bz̄(τ),

with τ = t
ε

and z̄ = z + c
b
yx(t, 0).

Stability conditions: b < 0 (obvious) and
∣∣ac
b

∣∣ < 1 (not so obvious, but known
[Zhang, 1994]).
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Optional Result

Recall that:

Ẇ (y) ≤ −λ‖y‖2L2(0,L) + κ1‖d1(t, ·)‖2L2(0,L) + κ2|d2(t)|2

−κ3|yx(t, 0|2

Theorem (Marx and C., 2023)

∀a, b, c ∈ R such that a
2c2

b2
< κ3

κ2
, where κ2 and κ3 are defined in the definition of

W , ∃ε∗ > 0 such that ∀ε ∈ (0, ε∗), the origin is exponentially stable with initial
conditions (y0, z0) ∈ H3(0, L)× R such that

y0(0) = y0(L) = 0, y′0(L) = ab(z0 +
c

b
y′0(0)).

�estion

Why the initial conditions need to be so regular ? As we use z̃ = z + c
b
yx(t, 0),

we di�erentiate yx(t, 0) with respect to time, which requires higher regularity !
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Achievements and open problems

Achievements

1. We have applied the singular perturbation analysis for a coupled KdV-ODE
system;

2. Special Lyapunov functionals have been designed to achieve such a result.

Open problems

1. What about the case of coupled PDEs ? Work in progress on the
parabolic-hyperbolic case with Gonzalo Arias (PhD student, UC) and Swann Marx.

2. What about the case of operators generating semigroups ? Is it possible to find
a general result ?

3. Other counterexamples where the approach fails.
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Thank you for your a�ention
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