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Systems with different time-scales

e Many natural phenomena feature interaction of processes on different times scales.

o A lot of difficulties appear. For instance, huge cost in numerical simulations since
the fastest time scale sub-system must be fully solved over a timespan of the
slowest scales’ order.

e Desirable: we want instead solve a limit system, describing approximately the full
behavior when some parameters (representing the scales) go to zero (or infinity)
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Problem statement

Consider the following coupled system with different time-scales

€Yt + Yo + Yzaa = 0, (t,z) € Ry x [0, L],
y(t,0) =y(t,L) =0, t € Ry,

yu(t, L) = az(t), t € Ry,

y(0,z) = yo(x), = € [0, L],

2(t) = bz(t) + cy.(1,0), t € Ry,

2(0) = 20,

a,b,c € R, e > 0is supposed to be small.
Questions

1. What are the conditions on a, b, ¢ such that the coupled system is stable ? Do
these conditions change when € is small ?

2. What is the behavior of the solutions w.r.t. small  ?
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A finite-dimensional example

A finite-dimensional example

with a,b,¢c,d € R.

Because of ¢, the dynamics of y is supposed to be faster than the one of z =
hence, we fixa < 0!

Lyapunov function
1 2
Viy,2) = jey” +leMy —z[7,

with M € R to be selected. This Lyapunov function is inspired by the forwarding
approach [Mazenc & Praly, 1996].
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Conditions on a, b, ¢, d (1)

V(y,2) = ay® + bzy + (May + Mbz — cz — dy)(eMy — 2)
Let us choose M such that M a = d. Hence,

V(y,z) = ay® + bzy + (<%d - c) z) (eMy — z)

Then, using Young’s inequalities:

V(y,2) <(a+ a1+ M’az)y®

+ <i (bad—c)2— (%—C) +£j> 2(t)?
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Conditions on a, b, ¢, d (2)

V(y, z) =(a+ a1 + M as)y?
<52 (bd )2 <bd ) b2> )
+|—\——c] —|——c¢c|]+— ]z
a9 a a (65]
Choice of a, b, ¢, d

1. a < 0 and a1, as sufficiently small so that a + a1 + M?as < 0
bd _ ¢ < ko, with suitable k1, ko > 0

2. b sufficiently small, (a, d, c) satisfying k1 < °¢
so that the polynomial %XQ - X+ % is always negative.

Question

If one assumes ¢ sufficiently small, do the conditions change ?
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The singular perturbation principle

The singular perturbation principle consists in decoupling the coupled system into
two approximated systems:

1. The reduced order system ~ slower system

2. The boundary layer system =~ faster system

Question

How can one compute these two systems ?
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Approximated systems: reduced order system

Recall that:
£y = ay(t) + b(t)
z=cz(t) + dy(t).

Reduced order system

Suppose that e = 0. Then,ay + bz = 0=y = —gz, which is called the
equilibrium point.

Then, replacing y by the equilibrium point in the z-dynamics, the reduced order
system reads
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Approximated systems: boundary layer system

Recall that:

{sy = ay(t) + bz(t)
z = cz(t) + dy(t).

Boundary layer system

Set T = i andy =y + gz Then,
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Stability conditions

Approximated systems

The reduced order system is

The boundary layer system is

Stability conditions

If a < 0and (c — ”d) < 0, then both systems are stable.

Question

If € is small enough, do these conditions hold for the full-system ?
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Change of coordinates

Consider the following change of coordinates:
- b

y=y + 2
a

where —gz is the equilibrium point.
Then, the full-system can be written equivalently as

ey =ay+e— c—— |z+dj |,
a a

z= (c—@)z—i—dg}
a
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Lyapunov function

Using the Lyapunov function
- 1 . 2
V(g,z):= 59 + |eMg — z|

one can find € such that, for any € € (0,e"), and for any a, b, ¢, d € R satisfying
a <0andc— bf < 0, there exist p1, 2 > 0 such that

V(j,2) < —my® — paz’.
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Generalities

Consider general linear systems:

ey = Ay + Bz,
2=Cz+ Dy,

with y € R", z € R™ and the matrices A, B, C, D of appropriate dimension.

Result

For sufficiently small €, the conditions for the reduced order system and the
boundary layer system to be stable hold for the full-system.

Such a result can be found for instance in [Kokotovi¢, Khalil, O’Reilly, 1986]. The
strategy for linear systems relies on a frequency approach. Nonlinear version can
be found in [Khalil, 2000].

Question

What about the infinite-dimensional case ?
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Existing results and counter-example

Very few results exist for the infinite-dimensional setting:
[Tang, Prieur, Girard, 2015 and 2016],

[Tang, Mazanti, 2017],

[Cerpa, Prieur, 2020].

These results focus on a particular class of systems, namely hyperbolic systems
coupled with ODEs.
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Existing results and counter-example

Counter-example

£i(t) = —0.1y(t) — 2(1,1)
ze(t, ) + 2z (t,z) =0
2(0,t) = 22(1,t) + 0.2y(¢).
The reduced order system is given by
Ze(t, o) + Zx(t,x) =0
z(0,t) =0
and the boundary layer system reads

L glr) = —0.15(0)

Both systems are always exponentially stable. But the full-system is not (proof
based on the method of characteristics).
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Coupled system

Let us go back to the KdV equation coupled with an ODE

eyt + Yz + Yaae = 0, (¢,z) € Ry x [0, L],
y(t,0) =y(t,L) =0, t € Ry,

Yo (t, L) = az(t), t € Ry,

y(0,2) = yo(z), z € [0, L],

Z(t) = bz(t) + cy.(1,0), t € Ry,

z(0) = zo.

Here, the fast system is the KdV equation. It should be exponentially stable
without coupling as in the finite-dimensional case.

Question

What are the stability conditions for a single KdV equation ?
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Critical length: exponential stability

Yt + Yo + Yaze = 0, (t,2) € Ry x [0, L],
y(t,0) =y(t,L) =0, ¢t € Ry,

yo(t, L) =0, t € Ry,

y(0,2) = yo(x), = € [0, L].

Theorem (Rosier, 1997)

If L ¢ N, with
N = {2m/7k2+§l+12 Dkl € N},

The equilibrium point 0 is exponentially stable for the KdV equation.

Moreover, if L € A/, we may loose the observability property of the output
Ya(t,0).
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Critical length: exponential stability

Yt + Yo + Yaza = 0, (t,2) € Ry x [0, L],
y(t,0) =y(t,L) =0, t € Ry,

y(t, L) =0, t € Ry,

Y(0,2) = yo(z), = € [0, L].

Example

The energy E(y) = %HyHQLz(O’L) satisfies
d
—F
dt

With L = 27 and yo(z) = 1 — cos(z), one has

(y) = —ly=(t,0)°.

y(t,z) =1 — cos(x).

Thus, y(¢,0) = 0, which implies that E(y) = E(yo).
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Critical length: exponential stability

Yt + Yo + Yaze = 0, (¢,2) € Ry x [0, L],
y(t,0) =y(t,L) =0, t € Ry,
Yo (t, L) =0, t € Ry,
y(0,z) = yo(x), z € [0, L].
For the nonlinear KdV equation:
Yt + Yo + Yaza + Yy =0, (¢, z) € Ry x [0, L],
y(t,0) =y(t, L) =0, t € Ry,
yo(t, L) =0, t € Ry,
y(0,2) = yo(z), = € [0, L],

one can prove the asymptotic stability of the origin for some L € A/ ([Tang et al.,
2017], [Nguyen, 2020]).
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Input-to-State stability

Yt +yz + Yxxx = dl(t711f)7 (t7 ZU) S R+ X [O,L},
y(t70) = y(t7 L) =0,te R+a
yr(ta L) = dZ(t)v te RJH

where di and da are perturbations.

Theorem (Balogoun, Marx, Astolfi, 2022)

Suppose L ¢ N . Then, there exists an ISS Lyapunov functional
W : L2(0, L) — L?(0, L) for the KdV equation, i.e. there exist positive constants
¢, C, \, K1, k2, k3 such that

2 E—
QH?J”L?(O,L) <W(y) < C”Z/HL?(O,L)
and

W(y) < = Alyllzz(0,0) + rallda(t, 720,y + malda(t)]®
— Kisly= (¢, 0]
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Strategy

In the following, we will:
e Follow the same procedure as for the finite-dimensional system;

e Use the Lyapunov functional W given by the last theorem.
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Main results

€Yt + Yo + Yzaz = 0, (t,2) € Ry x [0, L],
y(t,0) =y(t,L) =0, ¢t € Ry,

Yo (t, L) = az(t), t € Ry,

y(0,2) = yo(z), = € [0, L],

2(t) = bz(t) + cy=(¢,0), t € Ry,

z(0) = zo.

Proposition (Marx and C., 2023)

For any € > 0, there exist a, k1, k2 such that if a < a. and b, ¢ satisfy

k1 < ac — b < ka, then the origin is globally exponentially stable.

This result can be seen as a sort of generalization of one of the result in [Balogoun,
Marx, Astolfi, 2022], where b = 0 and ¢ = 1.
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Main results

€Yt + Yo + Yzaz = 0, (t,z) € Ry x [0, L],
y(t,0) =y(t,L) =0, t € Ry,

yu(t, L) = az(t), t € Ry,

y(0,2) = yo(z), z € [0, L],

2(t) = bz(t) + cy=(t,0), t € Ry,

z(0) = zo.

Theorem (Marx and C., 2023)

For any a, b, ¢ € R such that (b — ac) < 0, there exists ¢* such that, for any
e € (0,e"), the origin is globally exponentially stable.

We will see that the singular perturbation method applies for the coupled
KdV-ODE system!
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Reduced order system

Suppose that € = 0. Then,

he 4+ haex =0, (t,z) € Ry x [0, L],
h(t,0) = h(t,L) =0, t € Ry,
hz(t,L) = az(t), t € R;.

There exists an explicit solution to this problem:

ht,w) = —2a2(t) (),
with f(z) = Smé,‘) sin (£) sin (£5%). Note that he(t,0) = —az(t), then

2

replacing in Z = bz(t,0) + cyz(t, 0) y= (¢, 0) by —az, one obtains

Reduced order system

() = (b — ac)z(t).

If (b — ac) < 0, then this system is exponentially stable !
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Boundary layer system

Set T = ﬁ After some computations similar to the finite-dimensional case, one
obtains:

Boundary layer system

Yr + Yz + Yrxx = 07
y(1,0) =y(r, L) =0,
Yo(7, L) = 0.

If L ¢ N, the system is exponentially stable !
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Lyapunov functional

As for the finite-dimensional case, we will follow a forwarding approach, i.e. we
consider

Viy2) = eW(y) + 5 (eMy — 2

which is the same Lyapunov functional as in [Balogoun, Marx, Astolfi, 2020]. The
operator M is an integral operator, i.c.

My:A M(z)y(x)de,

where M is the solution to

with M (z) = —f(x)ec.
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Time-derivative of the Lyapunov functional

Recall that:
Yt + Yz + Yazz = 07 (t,il?) S R+ X [O,L],

y(t,0) =y(t, L) =0, t € Ry,
yu(t, L) = az(t), t € Ry,
y(0,2) = yo(z), = € [0, L],

2(t) = bz(t) + cy.(1,0), t € Ry,
z(0) = zo.

Using the ISS Lyapunov functional

Seeing az(t) as a perturbation, one has

eW(y) < =Allyllzz0,1) + K2a’2(1)*
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Time-derivative of the Lyapunov functional

Recall that:
EYt + Yz + Yxxax = 07 (t,[l)) S R+ X [07L]7

y(t,0) =y(t, L) =0, t € Ry,
yo(t, L) = az(t), t € Ry,
4(0,2) = yo(z), = € [0, L],

Z(t) = bz(t) + cy.(t,0), t € Ry,
z(0) = zo.

Differentiating the other term
Integration by parts + M + Young’s inequality

I [ e —0) <

b — ac)?
(b— ac)z(t)® + ac®| M |20 1 llol22c0.z) + L2

2(t)?
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Time-derivative of the Lyapunov functional

One finally has:
V(y7 2) <(=A+ C¥€2||]V[H2L2(0,L))||Z/||2L2(0,L)

4 (@ + (b—ac) + maQ) 2(t)?

Choose
® o sothat —\ + CM€2HM||2L2(0,L) <0

® g sufficiently small and k1 < (ac — b) < ka, k1, k2 > 0, so that the polynomial
x?

2 . .
o — X + k2a” is always negative.
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Small e: change of coordinates

We consider
gt z) = y(t,z) + 2f (z)az(t)
One obtains
Gt + Uz + Yooz = —((b — ac)2(t) + cf(t,0)) f (z)
§(t,0) =g(t,L) =0
= (t, L) =0
2= (b—ac)z + cyu(t,0).

Using the same Lyapunov functional as before, one obtains the desired result !
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Tikhonov theorem

€Yt + Yo + Yzaz = 0, (t,2) € Ry x [0, L],
y(t,0) =y(t,L) =0, t € Ry,

yu(t, L) = az(t), t € Ry,

2(t) = bz(t) + cy=(,0), t € Ry,

Theorem (Marx and C., 2023)

There exist ax, k1, k2,€™, u > 0 such that if a < ax, b, ¢ satisfy
0 < ki1 < —(b—ac) < kz and e < ", then with any initial condition satisfying

s ) 1
llyo — %o + f2ollL2(0,0) + 120 — Zo| = O(e2), |Zo] = O(e2)
i 3

lGollL2(0,0) = O(e2),

one has

ly(t,) = 5(t/e,) + F()z(t)llL20,1) + |2(t) = 2(t)] = O(e)e ™.
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Optional What about the fast ODE?

Yt + Yo + Yaze = 0, (t,2) € Ry x [0, L],
y(t,0) =y(t,L) =0, t € Ry,

Yo (t, L) = az(t), t € Ry,

ez(t) = bz(t) + cy=(t,0), t € Ry,

Question

Does the singular perturbation method apply for the case where the ODE is fast ?

Answer: yes, but some adjustments need to be done !
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Optional Approximated systems

Reduced order system
Set € = 0, one has z(t) = —{y(t,0).
y(t,0) =y(t, L) =0

ac _

Uu(t, L) = — ?y;p(t., 0).

Boundary layer system

d _ _
—2(r) = b2(7),

with7 =L and z2 = z + £y.(t,0).
Stability conditions: b < 0 (obvious) and ’%! < 1 (not so obvious, but known
[Zhang, 1994]).

E. Cerpa (UC Chile) Singular perturbation analysis for a KdV-ODE system 27/30



Optional Result

Recall that:

2

W(y) < _)‘”y”i%o,L) + w1llda(t, ')HiQ((LL) + ra|da(1)|
—N3|’yz(t,0|2

Theorem (Marx and C., 2023)
Va, b, c € R such that “2_52 < :—Z, where k2 and k3 are defined in the definition of
W, 3e* > 0 such that Ve € (0,£™), the origin is exponentially stable with initial

conditions (yo, z0) € H>(0, L) x R such that

y0(0) = yo(L) =0, yo(L) = ab(zo + %yé(o))

Question

Why the initial conditions need to be so regular ? As we use Z = z + {y.(t,0),
we differentiate y (¢, 0) with respect to time, which requires higher regularity !
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Achievements and open problems

Achievements
1. We have applied the singular perturbation analysis for a coupled KdV-ODE
system;

2. Special Lyapunov functionals have been designed to achieve such a result.

Open problems

1. What about the case of coupled PDEs ? Work in progress on the
parabolic-hyperbolic case with Gonzalo Arias (PhD student, UC) and Swann Marx.

2. What about the case of operators generating semigroups ? Is it possible to find
a general result ?

3. Other counterexamples where the approach fails.
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Thank you for your attention
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