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Introduction
Study of the damping–delayed system

Previous results

This talk is doveted to the analysis of solutions of the Kawahara equation [18, 24], a
fifth higher-order Korteweg-de Vires (KdV) equation

ut + ux + uxxx − uxxxxx + uux = 0 (1)

which is a dispersive PDE describing numerous wave phenomena such as magneto-acoustic
waves in a cold plasma [22], gravity waves on the surface of a heavy liquid [13], etc.
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Previous results

The objective here is to analyze the qualitative properties of solutions to the initial-
boundary value problem for (1) posed on a bounded interval under the presence of a localized
damping and delay terms, that is

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+u(x, t)ux(x, t) + a (x)u(x, t) + b(x)u(x, t− h) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

(2)

where h > 0 is the time delay, L > 0 is the length of the spatial domain, u(x, t) is the
amplitude of the water wave at position x at time t, and a = a(x) and b = b(x) are
nonnegative functions belonging to L∞(Ω).
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Previous results

For our purpose let us introduce the following assumption.

Assumption 1

The real functions a = a (x), b = b (x) are nonnegative functions belonging to L∞(Ω).
Moreover, a(x) ≥ a0 > 0 almost everywhere in a nonempty open subset ω ⊂ (0, L).
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Previous results

Note that the term a(x)u designs a feedback damping mechanism (see, for instance [1]);
therefore, one can expect the global well-posedness of (2) for all L > 0. Therefore, defining
the energy of system (2) by

Eu(t) =
1

2

∫ L

0

u2(x, t)dx+
h

2

∫ L

0

∫ 1

0

b(x)u2(x, t− ρh)dρdx, (3)

the following questions arise:

Does Eu(t) −→ 0, as t → ∞? If it is the case, can we give a decay rate?
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Previous results

In this case, the derivative of the energy E satisfies

d

dt
Eu(t) ≤− u2

xx(0)−
∫ L

0

a(x)u2(x, t)dx+
1

2

∫ L

0

b(x)u2(x, t)dx

+
1

2

∫ L

0

b(x)u2(x, t− h)dx+
1

2

∫ L

0

b(x)u2(x, t)dx

− 1

2

∫ L

0

b(x)u2(x, t− h)dx

≤
∫ L

0

b(x)u2(x, t)dx.

The previous inequality means that the energy is not decreasing in general, since the
term b(x) ≥ 0 on (0, L).
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Previous results

Theorem 1

Assume that the functions a(·) and b(·) satisfy the conditions given in Assumption 1 and
let L < π

√
3. Under these assumptions, there exist δ > 0, r > 0, C > 0 and ν > 0, such

that if ∥b∥∞ < δ, then for every (u0, z0) ∈ H = L2(0, L) × L2((0, L) × (0, 1)) satisfying
∥(u0, z0)∥H ≤ r, the energy (3) of the system (2) satisfies

Eu(t) ≤ Ce−νtEu(0), for all t ≥ 0.
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Previous results

Another goal of this talk, is to consider the following µi−system

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+u(x, t)ux(x, t) + a (x) (µ1u(x, t) + µ2u(x, t− h)) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

(4)

which was inspired by the work of Nicaise and Pignotti [31].
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Previous results

Here h > 0 is the time delay, µ1 > µ2 are positive real numbers. We consider the
following energy associated with the solutions of the system (4)

Eu(t) =
1

2

∫ L

0

u2(x, t)dx+
ξ

2

∫ L

0

∫ 1

0

a(x)u2(x, t− ρh)dρdx, (5)

where ξ is a positive constant verifying the following

hµ2 < ξ < h(2µ1 − µ2). (6)
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Previous results

Again, we are interested to see the questions previously mentioned. Note that, in a
different way from our first goal, the derivative of the energy (5) satisfies

E′
u(t) ≤ −C

[
u2
xx(0) +

∫ L

0

a(x)u2(x)dx+

∫ L

0

a(x)u2(x, t− h)dx

]
≤ 0,

for some positive constant C := C(µ1, µ2, ξ, h).
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Previous results

For the system (4) we split the behavior of the solutions into two parts. Employing
Lyapunov’s method, it can be deduced that the energy (5) goes exponentially to zero as
t → ∞, however, the initial data needs to be sufficiently small in this case. Precisely, the
local result can be read as follows.
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Previous results

Theorem 2

Let L > 0, assume that a ∈ L∞(Ω), (6) holds and L < π
√
3. Then, there exists 0 < r <

9π2−3L2

2L
3
2 π2

such that for every (u0, z0(·,−h(·))) ∈ H satisfying ∥(u0, z0(·,−h(·)))∥H ≤ r, the

energy (5) of the system (4) decays exponentially. More precisely, considering

γ = min

{
9π2 − 3L2 − 2L

3
2 rπ2

3L2(1 + 2Lα)
α,

βξ

2h(ξβ + ξ)

}
and κ =(1 +max{2αL, β}) ,

with α and β positive constants such that

α <min

{
1

2Lµ1 + Lµ2

(
µ1 −

ξ

2h
− µ2

2
− βξ

2h

)
,

1

Lµ2

(
ξ

2h
− µ2

2

)}
,

β <
2h

ξ

(
µ1 −

ξ

2h
− µ2

2

)
.

Then,
E(t) ≤ κE(0)e−2γt for all t > 0.
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Previous results

The last result of the talk, still related to the system (4), we give the result that removes
the hypothesis of the initial data being small. To do that, we use the compactness-uniqueness
argument, which reduces our problem to prove an observability inequality for the nonlinear
system (4). More precisely, we have the following semi-global result.
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Previous results

Theorem 3

Assume that a(x) satisfies Assumption 1. Suppose that µ1 > µ2 and let ξ > 0 satisfying (6).
Let R > 0, then there exists C = C(R) > 0 and ν = ν(R) > 0 such that Eu, defined in (5),
satisfies

Eu(t) ≤ CEu(0)e
−νt, ∀t > 0,

for solutions of (4) provided that ∥(u0, z0)∥H ≤ R.
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Previous results

Concerning the Kawahara equation, recently in [1], the authors considered the following
damped system

ut + ux + uxxx − uxxxxx + upux + a(x)u = 0, (x, t) ∈ (0, L)× (0, T ), (7)

for p ∈ [1, 4), with a presence of an extra damping term a(x) satisfying Assumption 1.
This damping mechanism is essential already in a linear case: if a(x) ≡ 0 and the length

of an interval is critical (see [1]), then it can be constructed a nontrivial solution to
ut + ux + uxxx − uxxxxx = 0, (x, t) ∈ (0, L)× (0, T )

u (0, t) = u (L, t) = ux (0, t) = ux (L, t) = uxx (L, t) = 0, t ∈ (0, T )

u (x, 0) = u0 (x) , x ∈ (0, L),

which does not decay to 0 as t → ∞.
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Inspired by [41, J. Valein], we consider the following perturbed system

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+u(x, t)ux(x, t) + a (x)u(x, t)

+b(x)u(x, t− h) + b(x)ξu(x, t) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

(8)

which is “close” to (2) but with a nonincreasing energy, with ξ a positive constant.
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First, let us consider the system (8) linearized around 0.

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+a (x)u(x, t) + b(x)u(x, t− h) + ξb(x)u(x, t) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0),

(9)

with the energy defined by

Eu(t) =
1

2

∫ L

0

u2(x, t)dx+
ξh

2

∫ L

0

∫ 1

0

b(x)u2(x, t− ρh)ρdx, (10)
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For the perturbed system we get, for ξ > 1, that the derivative of the energy Eu(t), for
classical solutions of (8), satisfies

d

dt
Eu(t) ≤− u2

xx(0)−
∫ L

0

a(x)u2(x, t)dx+
1

2

∫ L

0

b(x)u2(x, t)dx

+
1

2

∫ L

0

b(x)u2(x, t− h)dx−
∫ L

0

ξb(x)u2(x, t)dx

+
1

2

∫ L

0

ξb(x)u2(x, t)dx− 1

2

∫ L

0

ξb(x)u2(x, t− h)dx

≤− u2
xx(0)−

∫ L

0

a(x)u2(x, t)dx+
1

2

∫ L

0

(b(x)− ξb(x))u2(x, t)dx

+
1

2

∫ L

0

(b(x)− ξb(x))u2(x, t− h)dx≤ 0.
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Choosing the following Lyapunov functional

V (t) = E(t) + αV1(t) + βV2(t), (11)

where α and β are positive constants that will be fixed small enough, later on, where V1 is
defined by

V1(t) =

∫ L

0

xu2(x, t)dx (12)

and V2 is defined by

V2(t) =
h

2

∫ L

0

∫ 1

0

(1− ρ)b(x)u2(x, t− ρh)dρdx. (13)
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Proposition 2.1

Assume that a and b are nonnegative function in L∞(0, L), b(x) ≥ b0 > 0 in ω, L < π
√
3

and ξ > 1. Then, for every (u0, z0(·,−h(·))) ∈ H, the energy of system (9), denoted by E
and defined by (10), decays exponentially. More precisely, considering

γ = min

{
(3π2 − L2)α

L2(1 + 2αL)
,

β

2h(ξ + β)

}
and κ =

(
1 + max

{
2αL,

β

ξ

})
,

where α is a positive constant such that

α <
ξ − 1

2L(1 + 2ξ)

and
β = ξ − 1− 2αL(1 + 2ξ),

then
E(t) ≤ κE(0)e−2γt for all t > 0.
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Now we will study the asymptotic stability of the linear system associated with (8),
namely, 

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+b(x)u(x, t− h) + a (x)u(x, t) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

u(x, t) = z0(x, t) x ∈ (0, L), t ∈ (−h, 0).

(14)

The next result ensures that the energy

Eu(t) =
1

2

∫ L

0

u2(x, t)dx+
h

2

∫ L

0

∫ 1

0

b(x)u2(x, t− ρh)dρdx, (15)

associated of the system (14) decays exponentially
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Proposition 2.2

Assume that a and b are nonnegative function in L∞(0, L), b(x) ≥ b0 > 0 in ω, L < π
√
3

and ξ > 1. So, there exists δ > 0 (depending on ξ, L, h) such that if, ∥b∥∞ ≤ δ then, for
every (u0, z0(·,−h(·))) ∈ H the energy of system Eu, defined in (15), goes to 0 exponentially
as t goes to infinity. More precisely, there exists T0 > 0 and two positive constants ν and C
such that

Eu(t) ≤ Ce−νtEu(0), for all t ≥ 0.
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To prove this result, let us consider the two systems

vt(x, t) + vx(x, t) + vxxx(x, t)− vxxxxx(x, t)

+a (x) v(x, t) + b(x)z1(1) + ξb(x)v(x, t) = 0 x ∈ (0, L), t > 0,

v (0, t) = v (L, t) = 0 t > 0,

vx (0, t) = vx (L, t) = vxx (L, t) = 0 t > 0,

v (x, 0) = u0 (x) x ∈ (0, L),

hz1t (x, ρ, t) + z1ρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z1(x, 0, t) = v(x, t) x ∈ (0, L), t > 0,

z1(x, ρ, 0) = v(x,−ρh) = z0(x,−ρh) x ∈ (0, L), ρ ∈ (0, 1)

(16)

and
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

wt(x, t) + wx(x, t) + wxxx(x, t)− wxxxxx(x, t)

+a (x)w(x, t) + b(x)z2(1) = ξb(x)v(x, t) x ∈ (0, L), t > 0,

w (0, t) = w (L, t) = 0 t > 0,

wx (0, t) = wx (L, t) = wxx (L, t) = 0 t > 0,

w (x, 0) = 0 x ∈ (0, L),

hz2t (x, ρ, t) + z2ρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z2(x, 0, t) = w(x, t) x ∈ (0, L), t > 0,

z2(x, ρ, 0) = 0 x ∈ (0, L), ρ ∈ (0, 1).

(17)
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Define u = v + w and z = z1 + z2, then

ut(x, t) + ux(x, t) + uxxx(x, t)− uxxxxx(x, t)

+a (x)u(x, t) + b(x)z(1) = 0 x ∈ (0, L), t > 0,

u (0, t) = u (L, t) = 0 t > 0,

ux (0, t) = ux (L, t) = uxx (L, t) = 0 t > 0,

u (x, 0) = u0 (x) x ∈ (0, L),

hzt(x, ρ, t) + zρ(x, ρ, t) = 0 x ∈ (0, L), ρ ∈ (0, 1), t > 0,

z(x, 0, t) = u(x, t) x ∈ (0, L), t > 0,

z(x, ρ, 0) = z0(x,−ρh) x ∈ (0, L), ρ ∈ (0, 1).

(18)

29 / 41



Introduction
Study of the damping–delayed system

Fix 0 < η < 1 and pick

T0 =
1

2γ
ln

(
2ξκ

η

)
+ 1, (19)

so κe−2γT0 < η
2ξ and Ev(T0) ≤ κEv(0)e

−2γT0 < η
2ξEv(0) <

η
2Eu(0).

After some computations, we have

Eu(T0) ≤2Ev(T0) + 2ξ3∥b∥2∞e(3ξ+1)T0κEu(0)

≤(η + ε)Eu(0),

where ε > 0 is such that η + ε < 1. Proceeding in an analogous way we get

Eu(mT0) ≤ (η + ε)mEu(0),

for all m ∈ N∗.
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Now, to finish, let t > T0, then there exists m ∈ N∗ such that t = mT0 + s with
0 ≤ s < T0, we have

Eu(t) ≤e2∥b∥∞(t−mT0)Eu(mT0)

≤e2∥b∥∞s(η + ε)mEu(0)

=e2∥b∥∞se−νmT0Eu(0)

=e2∥b∥∞se−ν(t−s)Eu(0)

≤e(2∥b∥∞+ν)T0e−νtEu(0),

where

ν =
1

T0
ln

(
1

(η + ε)

)
, (20)

showing the proposition.

31 / 41



Introduction
Study of the damping–delayed system

Lemma 4

For any T,R > 0 there exists K := K(R, T ) > 0 such that

∥u∥2L2(0,T,L2(0,L)) ≤K

(∫ T

0

u2
xx(0, t)dt+

∫ T

0

∫ L

0

a(x)u2(x)dxdt

+

∫ T

0

∫ L

0

a(x)u2(x, t− h)dxdt

) (21)

holds for all solutions of the nonlinear system (4) with ∥(u0, z0(·,−h(·)))∥H ≤ R.
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