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Motivation

Example
Going beyond the dichotomy arbitrage / no-arbitrage

In order to:

consider model uncertainty without NA-restrictions

avoid imposing too idealized constraints

accommodate market shocks

use when difficult to check NA condition, as in data driven models (at the same
time, costly to impose martingale condition on pricing measures)

⇒ we suggest a way to quantify arbitrage and see what we can say when allowing
for “small arbitrage” (pricing, hedging,...)
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Setting and notations

Discrete-time setting: t = 0, 1, ...,T

S adapted process on (Ω,F ,F = (Ft)T
t=0,P): discounted asset price of d assets

H = (Ht)T
t=1 (predictable) trading strategies (denoted H ∈ H)

| . |: Euclidean norm on Rd (we can consider any p-norm, p ∈ [1,∞))

‖X‖ =
∑

t |Xt|

ε > 0
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The notion of ε-arbitrage

Definition
A trading strategy H ∈ H is a strict ε-arbitrage if

P [(H • S )T − ε‖H‖ ≥ 0] = 1 and P [... > 0] > 0.

ε : “amount” of arbitrage
‖H‖ : “normalization” of strategies, to be able to talk of amount of arbitrage

(alternative interpretation of ε‖H‖ : cost of managing the portfolio associated to H)

Definition

A sequence (Hk)k∈N⊆ H of trading strategies is called an ε-arbitrage if

P
î
lim inf

k→∞

{
(Hk • S )T − ε‖Hk‖

}
≥ 0
ó

= 1 and P [... > 0] > 0.

We write NAε(P) if the market admits no ε-arbitrage
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Example

It is possible that:

@ strict ε-arbitrage

but ∃ ε-arbitrage

Example: t = 0, 1, Ω := {ω1, ω2}, d = 2, S 0(ω) := (0, 0), S 1(ω) :=

®
(ε, 0), ω = ω1

(ε, 1), ω = ω2

• •

•
e2

e1←→ε

⇒ Hk := (k, 1) is an ε-arbitrage
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The notion of ε-martingale measure

Definition

A probability measure Q ∼ P is an ε-martingale measure if, for all t, S t ∈ L1(Q) and∣∣EQ[∆S t|Ft−1]
∣∣ ≤ ε.

Equivalently, for all H ∈ H with ‖H‖ ≤ 1,

EQ[(H • S )T − ε‖H‖] ≤ 0

(cf. ε-approximating martingale measures from Guo and Obloj)

Mε(P) :=
ß
Q ε-martingale measure s.t.

dQ
dP
∈ L∞(Ω,FT ,P)

™
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Relation between ε-arbitrage and ε-martingale measures

It is possible that:

@ strict ε-arbitrage

@ ε-martingale measure

In previous example:

•d

←→ε

for all Q ∼ P, |EQ[∆S 1|F0]| = d > ε

Theorem (Quantitative FTAP)

NAε(P) ⇐⇒ Mε(P) , ∅
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Canonical decomposition

Theorem
Assume absence of strict ε-arbitrage. Then any H ∈ H can be decomposed as

H = J + G + G̃, with J ∈ Eε, G ∈ E⊥ε ∩ E⊥0 , G̃ ∈ E⊥ε ∩ E0

Eε

E⊥ε ∩ E⊥0

E⊥ε ∩ E0

E⊥ε

Eε = {H ∈ H : Ht · ∆S t = ε|Ht| ∀ t}

E0 = {H ∈ H : Ht · ∆S t = 0 ∀ t}
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The special role of E⊥ε ∩ E⊥0

Theorem

NAε ⇐⇒

®
no strict ε-arbitrage

for any G ∈ E⊥ε ∩ E⊥0 , (G • S )T ≥ 0 =⇒ (G • S )T = 0

That is, no strict ε arbitrage, and no classical arbitrage for a subfamily of strategies

Theorem
The closure of K := {(H • S )T − ε‖H‖ : H ∈ H} w.r.t. convergence in probability is

K =
{

(H • S )T − ε‖H‖ +(G • S )T : H ∈ H ,G ∈ E⊥ε ∩ E⊥0 ,Ht ·Gt = 0 ∀t
}
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Pricing-hedging duality

Theorem

Let Ψ ∈ L1(Ω,FT ,P) be the payoff of a claim. Under NAε(P) we have

sup
{
EQ[Ψ] : Q ∈ Mε(P)

}
= inf

¶
x : ∃H ∈ H ,G ∈ E⊥ε ∩ E⊥0 s.t.

x + (H • S )T + (G • S )T ≥ Ψ + ε‖H‖
©

Interpretation: minimal cost to super-replicate and cover costs to manage portfolio H,

while costs for G can be compensated with other trading strategies
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ε-fair price

Definition
We say that ψ ∈ R is an ε-fair price for a claim Ψ if having Ψ at price ψ in the market
does not introduce ε-arbitrage:

lim inf
k→∞

{
(Hk • S )T + ak(Ψ − ψ) − ε

(
‖Hk‖ + |ak|

)}
=: Y ≥ 0 =⇒ Y = 0.

Theorem

Under NAε(P) we have

set of ε-fair prices for Ψ =
⋃

Q∈Mε(P)

[
EQ[Ψ] − ε,EQ[Ψ] + ε

]
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The critical value

Definition (critical value)

ε(P) := inf
{
ε > 0: there is no (strict) ε-arbitrage under P

}
Equivalently,

ε(P) = inf
{
ε ≥ 0 :Mε(P) , ∅

}
= sup

H∈H
ess infP

(H • S )T

‖H‖
χ
{‖H‖,0}

Theorem

If ε > ε(P), then

NAε(P) holds

K = K

sup
{
EQ[Ψ] : Q ∈ Mε(P)

}
= inf {x : ∃H ∈ H s.t. x + (H • S )T ≥ Ψ + ε‖H‖}
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Stability

Definition
We define the adapted L∞-distance as

AW∞(P,P′) := inf
{

ess supπ‖∆X − ∆Y‖ : π ∈ Π(µ, ν), π bicausal
}

Theorem

|ε(P) − ε(P′)| ≤ AW∞(P,P′)

Mε(P) , ∅ =⇒ Mε+AW∞(P,P′)(P′) , ∅

In particular, if P satisfies classical NA (⇒ ε(P) = 0), then for P′ in a δ-neighborhood we
can have at most δ arbitrage
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Stability

To have the above stability results, in the definition of our distance:

we cannot drop adaptedness:

•

•

•
•
•
δ

-δ

1

-1

- AW∞(Pδ,P) = 2, W∞(Pδ,P) = 2δ

- M0(P) , ∅, Mε(Pδ) = ∅ ∀ ε < 1 − δ

- ε(P) = 0, ε(Pδ) = 1 − δ

we cannot drop ess sup:

•

•

•

N

-δpδ

- AW∞(PN ,P) = N + δ, AW2(PN ,P) =
√
δ

- M0(P) , ∅, Mε(PN) = ∅ ∀ ε < N

- ε(P) = 0, ε(PN) = N
pδ = δ/(M + δ)2
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Conclusions

In the presented paper, we:

introduced quantification of concept of arbitrage

made sense of pricing and hedging under small arbitrage

established q-FTAP and q-duality

proved stability w.r.t. new AW∞-distance

Thank you for your attention!
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