Quantifying arbitrage

Beatrice Acciaio ETH Zurich

joint work with J. Backhoff (U. Vienna) and G. Pammer (ETH)

LACIAM 2023, Rio

Motivation

Going beyond the dichotomy arbitrage / no-arbitrage

In order to:

- consider model uncertainty without NA-restrictions
- avoid imposing too idealized constraints
- accommodate market shocks
- use when difficult to check NA condition, as in data driven models (at the same time, costly to impose martingale condition on pricing measures)
- ⇒ we suggest a way to quantify arbitrage and see what we can say when allowing for "small arbitrage" (pricing, hedging,...)

Setting and notations

- Discrete-time setting: t = 0, 1, ..., T
- S adapted process on $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t=0}^T, \mathbb{P})$: discounted asset price of d assets
- $H = (H_t)_{t=1}^T$ (predictable) trading strategies (denoted $H \in \mathcal{H}$)
- ullet | . |: Euclidean norm on \mathbb{R}^d (we can consider any p-norm, $p \in [1, \infty)$)
- $\bullet ||X|| = \sum_t |X_t|$
- $\varepsilon > 0$

The notion of ε -arbitrage

Definition

A trading strategy $H \in \mathcal{H}$ is a strict ε -arbitrage if

$$\mathbb{P}\left[(H \bullet S)_T - \varepsilon ||H|| \ge 0\right] = 1$$
 and $\mathbb{P}\left[... > 0\right] > 0$.

- ε : "amount" of arbitrage
- ||H||: "normalization" of strategies, to be able to talk of amount of arbitrage (alternative interpretation of $\varepsilon ||H||$: cost of managing the portfolio associated to H)

The notion of ε -arbitrage

Definition

A trading strategy $H \in \mathcal{H}$ is a strict ε -arbitrage if

$$\mathbb{P}[(H \bullet S)_T - \varepsilon ||H|| \ge 0] = 1$$
 and $\mathbb{P}[... > 0] > 0$.

- ε : "amount" of arbitrage
- ||H||: "normalization" of strategies, to be able to talk of amount of arbitrage (alternative interpretation of $\varepsilon ||H||$: cost of managing the portfolio associated to H)

Definition

A sequence $(H^k)_{k\in\mathbb{N}}\subseteq\mathcal{H}$ of trading strategies is called an ε -arbitrage if

$$\mathbb{P}\Big[\liminf_{k\to\infty}\left\{(H^k\bullet S)_T-\varepsilon||H^k||\right\}\geq 0\Big]=1\quad \text{ and }\quad \mathbb{P}\left[...>0\right]>0.$$

We write $NA_{\varepsilon}(\mathbb{P})$ if the market admits no ε -arbitrage

Example

It is possible that:

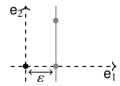
- \nexists strict ε -arbitrage
- ullet but $\exists \ arepsilon$ -arbitrage

Example

It is possible that:

- \nexists strict ε -arbitrage
- but $\exists \varepsilon$ -arbitrage

Example:
$$t = 0, 1, \ \Omega := \{\omega_1, \omega_2\}, \ d = 2, \ S_0(\omega) := (0, 0), \ S_1(\omega) := \begin{cases} (\varepsilon, 0), & \omega = \omega_1 \\ (\varepsilon, 1), & \omega = \omega_2 \end{cases}$$



 $\Rightarrow H^k := (k, 1)$ is an ε -arbitrage

The notion of ε -martingale measure

Definition

A probability measure $\mathbb{Q} \sim \mathbb{P}$ is an ε -martingale measure if, for all $t, S_t \in L^1(\mathbb{Q})$ and

$$\left|\mathbb{E}_{\mathbb{Q}}[\Delta S_t|\mathcal{F}_{t-1}]\right| \leq \varepsilon.$$

Equivalently, for all $H \in \mathcal{H}$ with $||H|| \le 1$,

$$\mathbb{E}_{\mathbb{Q}}[(H \bullet S)_T - \varepsilon ||H||] \le 0$$

(cf. ε -approximating martingale measures from Guo and Obloj)

$$\mathcal{M}_{\varepsilon}(\mathbb{P}) := \left\{ \mathbb{Q} \ \varepsilon\text{-martingale measure s.t.} \ \frac{d\mathbb{Q}}{d\mathbb{P}} \in L^{\infty}(\Omega, \mathcal{F}_T, \mathbb{P}) \right\}$$

Relation between ε -arbitrage and ε -martingale measures

It is possible that:

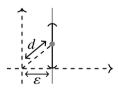
- \nexists strict ε -arbitrage
- $\exists \varepsilon$ -martingale measure

Relation between ε -arbitrage and ε -martingale measures

It is possible that:

- \nexists strict ε -arbitrage
- $\nexists \varepsilon$ -martingale measure

In previous example:



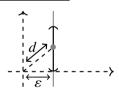
$$\text{ for all } \mathbb{Q} \sim \mathbb{P}, \ \ |\mathbb{E}_{\mathbb{Q}}[\Delta S_1|\mathcal{F}_0]| = d > \varepsilon$$

Relation between ε -arbitrage and ε -martingale measures

It is possible that:

- \nexists strict ε -arbitrage
- ∄ ε-martingale measure

In previous example:



for all $\mathbb{Q} \sim \mathbb{P}$, $|\mathbb{E}_{\mathbb{Q}}[\Delta S_1|\mathcal{F}_0]| = d > \varepsilon$

Theorem (Quantitative FTAP)

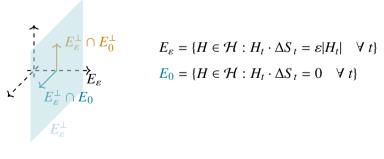
$$NA_{\varepsilon}(\mathbb{P}) \iff \mathcal{M}_{\varepsilon}(\mathbb{P}) \neq \emptyset$$

Canonical decomposition

Theorem

Assume absence of strict ε -arbitrage. Then any $H \in \mathcal{H}$ can be decomposed as

$$H = J + G + \tilde{G}, \qquad \text{with } J \in E_{\varepsilon}, \ G \in E_{\varepsilon}^{\perp} \cap E_{0}^{\perp}, \ \tilde{G} \in E_{\varepsilon}^{\perp} \cap E_{0}$$



$$E_{\varepsilon} = \{ H \in \mathcal{H} : H_t \cdot \Delta S_t = \varepsilon | H_t | \forall t \}$$

$$E_0 = \{ H \in \mathcal{H} : H_t \cdot \Delta S_t = 0 \quad \forall \ t$$

The special role of $E_{\varepsilon}^{\perp} \cap E_{0}^{\perp}$

Theorem

$$NA_{\varepsilon} \Longleftrightarrow \begin{cases} \text{no strict } \varepsilon\text{-arbitrage} \\ \text{for any } G \in E_{\varepsilon}^{\perp} \cap E_{0}^{\perp}, \ (G \bullet S)_{T} \geq 0 \implies (G \bullet S)_{T} = 0 \end{cases}$$

That is, no strict ε arbitrage, and no classical arbitrage for a subfamily of strategies

The special role of $E_{\varepsilon}^{\perp} \cap E_{0}^{\perp}$

Theorem

$$NA_{\varepsilon} \iff \begin{cases} \text{no strict } \varepsilon\text{-arbitrage} \\ \text{for any } G \in E_{\varepsilon}^{\perp} \cap E_{0}^{\perp}, \ (G \bullet S)_{T} \geq 0 \implies (G \bullet S)_{T} = 0 \end{cases}$$

That is, no strict ε arbitrage, and no classical arbitrage for a subfamily of strategies

Theorem

The closure of $K := \{(H \bullet S)_T - \varepsilon ||H|| \colon H \in \mathcal{H}\}$ w.r.t. convergence in probability is

$$\overline{K} = \left\{ (H \bullet S)_T - \varepsilon \|H\| + (G \bullet S)_T \colon H \in \mathcal{H}, G \in E_\varepsilon^\perp \cap E_0^\perp, H_t \cdot G_t = 0 \ \forall t \right\}$$

Pricing-hedging duality

Theorem

Let $\Psi \in L^1(\Omega, \mathcal{F}_T, \mathbb{P})$ be the payoff of a claim. Under $NA_{\varepsilon}(\mathbb{P})$ we have

$$\sup \left\{ \mathbb{E}_{\mathbb{Q}}[\Psi] \colon \mathbb{Q} \in \mathcal{M}_{\varepsilon}(\mathbb{P}) \right\} = \inf \left\{ x \colon \exists H \in \mathcal{H}, G \in E_{\varepsilon}^{\perp} \cap E_{0}^{\perp} \text{ s.t.} \right.$$
$$\left. x + (H \bullet S)_{T} + (G \bullet S)_{T} \geq \Psi + \varepsilon \|H\| \right\}$$

Interpretation: minimal cost to super-replicate and cover costs to manage portfolio H, while costs for G can be compensated with other trading strategies

ε -fair price

Definition

We say that $\psi \in \mathbb{R}$ is an ε -fair price for a claim Ψ if having Ψ at price ψ in the market does not introduce ε -arbitrage:

$$\liminf_{k\to\infty}\left\{(H^k\bullet S)_T+a^k(\Psi-\psi)-\epsilon\left(\|H^k\|+|a^k|\right)\right\}=:Y\geq 0\implies Y=0.$$

Theorem

Under $NA_{\varepsilon}(\mathbb{P})$ we have

set of
$$\varepsilon$$
-fair prices for $\Psi = \bigcup_{\mathbb{Q} \in \mathcal{M}_{\varepsilon}(\mathbb{P})} \left[\mathbb{E}_{\mathbb{Q}}[\Psi] - \varepsilon, \mathbb{E}_{\mathbb{Q}}[\Psi] + \varepsilon \right]$

The critical value

Definition (critical value)

$$\varepsilon(\mathbb{P}) := \inf \{ \varepsilon > 0 \colon \text{there is no (strict) } \varepsilon\text{-arbitrage under } \mathbb{P} \}$$

Equivalently,

$$\varepsilon(\mathbb{P}) = \inf \left\{ \varepsilon \ge 0 : \mathcal{M}_{\varepsilon}(\mathbb{P}) \neq \emptyset \right\} = \sup_{H \in \mathcal{H}} \operatorname{ess inf}_{\mathbb{P}} \frac{(H \bullet S)_T}{\|H\|} \chi_{\{\|H\| \neq 0\}}$$

The critical value

Definition (critical value)

$$\mathfrak{E}(\mathbb{P}) := \inf \{ \varepsilon > 0 : \text{ there is no (strict) } \varepsilon\text{-arbitrage under } \mathbb{P} \}$$

Equivalently,

$$\varepsilon(\mathbb{P}) = \inf \left\{ \varepsilon \ge 0 : \mathcal{M}_{\varepsilon}(\mathbb{P}) \neq \emptyset \right\} = \sup_{H \in \mathcal{H}} \operatorname{ess inf}_{\mathbb{P}} \frac{(H \bullet S)_{T}}{\|H\|} \chi_{\{\|H\| \neq 0\}}$$

Theorem

If $\varepsilon > \varepsilon(\mathbb{P})$, then

- $NA_{\varepsilon}(\mathbb{P})$ holds
- $K = \overline{K}$
- $\sup \{\mathbb{E}_{\mathbb{Q}}[\Psi] : \mathbb{Q} \in \mathcal{M}_{\varepsilon}(\mathbb{P})\} = \inf \{x : \exists H \in \mathcal{H} \text{ s.t. } x + (H \bullet S)_T \ge \Psi + \varepsilon ||H||\}$

Stability

Definition

We define the adapted L^{∞} -distance as

$$\mathcal{A}W_{\infty}(\mathbb{P}, \mathbb{P}') := \inf \left\{ \operatorname{ess\,sup}_{\pi} ||\Delta X - \Delta Y|| : \pi \in \Pi(\mu, \nu), \ \pi \text{ bicausal} \right\}$$

Theorem

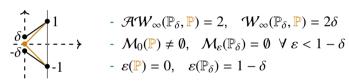
- $\bullet |\varepsilon(\mathbb{P}) \varepsilon(\mathbb{P}')| \le \mathcal{HW}_{\infty}(\mathbb{P}, \mathbb{P}')$
- $\mathcal{M}_{\varepsilon}(\mathbb{P}) \neq \emptyset \implies \mathcal{M}_{\varepsilon + \mathcal{H}W_{\infty}(\mathbb{P}, \mathbb{P}')}(\mathbb{P}') \neq \emptyset$

In particular, if \mathbb{P} satisfies classical NA ($\Rightarrow \varepsilon(\mathbb{P}) = 0$), then for \mathbb{P}' in a δ -neighborhood we can have at most δ arbitrage

Stability

To have the above stability results, in the definition of our distance:

we cannot drop adaptedness:



• we cannot drop ess sup:

Conclusions

In the presented paper, we:

- introduced quantification of concept of arbitrage
- made sense of pricing and hedging under small arbitrage
- established q-FTAP and q-duality
- proved stability w.r.t. new $\mathcal{H}W_{\infty}$ -distance

Thank you for your attention!