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Introduction

In the quantitative analysis of systems, two broad territories appear:
performance analysis (“how much” the system does, assuming it is
perfect) and dependability studies (how it behaves face to failures and
in some cases repairs, ignoring its work, its performance).

In some cases, we take simultaneously into account both aspects of
systems, and we then speak about performability.

In this work, we consider a dependability analysis on a static setting,
and we work with an extension of classic reliability metrics to the
performability family.
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The abstract model consists of a graph (assumed undirected here, to
simplify), where nodes are perfect but edges fail independently of
each other (the most used assumption; many other ones are possible).

For each edge i , ri is the probability that it works and 1 − ri is the
probability that it doesn’t, behaving as absent from the graph. This
means a binary world.

Classic reliability metrics consider connectivity-based metrics such as

Rs,t = P(there is at least a working path between nodes s and t),
Rall = P(there is at least a working path between any pair of nodes).

They are all-nothing measures. How to do better tan that?
Consider Rall. Instead of using this metric, we can work with the
number of pairs of nodes that can communicate (the # of pairs of
nodes having a working path between its 2 components).
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Resilience

Let NCP = number of pairs of nodes that can communicate in G .

The resilience Res of the model is then

Res = E(NCP).

This is a typical performability metric. Instead of a binary situation,
we can distinguish between a large number of possibilities (of
performance levels), ≤ 1 +

(
n
2

)
(from 0 to

(
n
2

)
) if there are n nodes in

the model.
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Some properties of resilience

Observe first that 0 ≤ NCP ≤
(
n

2

)
=

n(n − 1)

2
. Then,

P(NCP = 0) = Πall edge i (1 − ri ),

P
(
NCP =

(
n

2

))
= Rall,

Res |∀ edge i s.t. ri=0 = 0, Res |∀ edge i s.t. ri=1 =
(
n
2

)
.

Immediate bounds:
(
n
2

)
Rall ≤ Res ≤

(
n
2

)
.
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Define the r.v. Ys,t = 1
(
there is a path connecting nodes s and t

)
.

We have Rs,t = P(Ys,t = 1) = E(Ys,t) and then,

NCP =
∑

all nodes s,t, s < t

Ys,t ,

leading to

Res =
∑

all nodes s,t, s < t

Rs,t .

We can normalize the metric, dividing E
(
NCP

)
by
(
n
2

)
, thus leading

to an index in [0, 1].

The scaled resilience of the network, ResScaled , is then
ResScaled = 2Res/

(
n(n − 1)

)
, and we have

Rall ≤ ResScaled (≤ 1).
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Example: the bridge topology

3

1 4

2

Figure: The bridge topology

Homogeneous case.

Using brute force (listing all 25 possible links’ states), we obtain
Res = r

(
5 + 8r − 14r3 + 7r4

)
.

ResScaled =
Res

6
=

5 + 8r − 14r3 + 7r4

6
.
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Example: a path with n ≥ 2 nodes

1 2 3 n· · ·

Figure: A path with n ≥ 2 nodes

Homogeneous case.

Using conditioning, we obtain

Resn =
r
[
n(1 − r) − (1 − rn)

]
(1 − r)2

=
r
[
n − 1 − r(n − rn−1)

]
(1 − r)2

.

Scaling,

ResScaledn =
2r
[
n(1 − r) − (1 − rn)

]
n(n − 1)(1 − r)2

.
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Example: a ring with n ≥ 3 nodes

Figure: Here, a ring with 4 nodes

Homogeneous case.

Using using series-parallel formulas, we obtain (the formula also holds
if n = 2)

Resn = nr

(
1 − rn−1

1 − r
−

n − 1

2
rn−1

)
.

Scaling,

ResScaledn =
2r
(
1 − rn−1

)
(n − 1)(1 − r)

− rn.
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Standard Monte Carlo

Let us consider a classic metric such that Rs,t or Rall, here R.

Let Xi = 1
(
line i works

)
and Y = 1

(
the network doesn’t work

)
.

We have P(Xi = 1) = ri and P(Y = 1) = 1 − R = γ.

Let E = # of edges (the components of the systems) and denote
by X the vector X = (X1,X2, · · · ,XE ).

Make N independent copies X (1),X (2), · · · ,X (N) of X ;
for each copy X (n), compute the network state Y (n).

We then estimate γ by

γ̃N =
1

N

N∑
n=1

Y (n).
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This works fine if γ is not close to 0,
and becomes even useless when γ ≈ 0 (the rare event case).

The relative error of this estimation is Θ
(
(Nγ̃N)

−1/2
)
, that → ∞ as

γ→ 0, for fixed N.

This is always resumed in sentences such as “the standard estimator
behaves poorly in the rare event case”. We claim here that this is not
precise enough, it depends on how we implement the estimator.
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A specific implementation

Suppose we implement the standard Monte Carlo procedure the
following (horrible) way:

first, we build a table with N rows and E + 1 columns (think N � 1);
element (n, i), 1 ≤ i ≤ E , contains a realization of the binary random

variable X
(n)
i ;

once the first E columns filled, column E + 1 is filled with, at row n,
with the corresponding value of Y (n);
the estimation γ̃N of R can then be computed “at the end” (nothing
changed so far).
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X1 X2 · · · XE Y
1 1 1 1 · · · 0
2 1 1 1 · · · 0
3 1 1 0 · · · 1

...
...

...

N 1 1 1 · · · 1
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Remarks

Consider the case of ri ≈ 1 for all i , and thus R ≈ 1 as well, so,
γ ≈ 0.

Let’s now look at the table but in a column-by-column way. Assume,
to simplify the presentation, N = ∞.

Let Fi be the first element in column i ∈ {1, · · · ,E } with a ‘0’;
we have P(Fi = f ) = r f−1

i (1 − ri ), f ≥ 1.

Let M = min{F1, · · · ,FE }; M is also geometric:
P(M = m) = rm−1(1 − r), m ≥ 1, r = r1 · · · rE .
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A different viewpoint

This suggests a different way of implementing the same standard
Monte Carlo estimator, using previous observations and the fact that
the geometric r.v.s on N≥1 are memoryless.

Sample M. Call m the obtained value. Interpretation: the first m − 1
values of last column are all 0s.

For row m, we need to sample vector X , knowing that in F there is at
least one component down (one Xi equal to 0).
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Let J be the first component down in X and denote by Z the number
of components down. We have (j ≥ 1):

P(J = j | Z ≥ 1) =
r1r2 · · · rj−1(1 − rj)

1 − r
.

For row m we sample from this conditional distribution obtaining
some j ∈ {1, 2, . . . ,E }, we set to 1 the first j − 1 values, to 0 the jth,
and we sample the rest according to their Binary a priori law, and
independently. Last, we compute Y (m) to fill column E + 1.

Then, we sample M again, obtaining m ′, and repeat the process,
“virtually filling” rows m + 1,m + 2, . . . ,m +m ′”, etc.

We then prove that the estimator obtained this way (truncating the
“virtual infinite table” to its first N rows), is the standard one.

So the variance remains identical, but the cost in time is reduced. We
performed a time reduction, not a variance one.
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Cost

The standard implementation of the standard Monte Carlo estimator
needs O(NE ) operations.

After some algebra, using E(M) = (1 − r)−1, needs O(N(1 − r)E )
operations.

Dividing, the gain is

≈ NE

N(1 − r)E
=

1

1 − r
.
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Standard estimator of Res

Call NCC the number of connected components of the underlying
graph. Evaluating NCC on a given graph costs O(E ) (a single DFS
or BFS does the job), and measuring their sizes (in # of nodes) has
no complexity overhead (with respect to E ).

Suppose a given graph has ncc connected components, with sizes
c1, c2, . . . , cncc. Then, the # of communicating pairs in the graph is

ncp =

ncc∑
h=1

(
ch
2

)
.

The cost of this evaluation is then O(E ).

Estimating Res using the standard estimator R̂es provides the
confidence interval at 95% (R̂es ± 1.96S), where

S2 =
1

N(N − 1)

N∑
n=1

NCP (n) −
1

N − 1

N∑
n=1

R̂es
2
.
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In a nutshell: improvement

We can improve the proposed implementation of the standard
estimator R̂es following the same approach.

For instance, assume that the breadth b of the graph (whose
evaluation is polynomial) is known. Instead of defining F as the first
row in the virtual table where Z ≥ 1, we can use Z ≥ b, increasing
the gain.

Another possibility: find a covering tree of the underlying graph with
minimal weight, where the weights are multiplicative (the elementary
reliabilities). This is again, a polynomial task. Then, redefine F
accordingly. We also tested this idea and the gains can be
considerable.

Previous idea can be extended to finding several covering trees.
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In a nutshell: sensitivities

Computing sensitivities can be more interesting for the engineers than
the metrics itself.

In a nutshell, the “virtual table” view is ideal to do this task, with
minimal overhead, by means of a result presented here.

Define

σi =
∂Res

∂ri
and σs,t;i =

∂Rs,t

∂ri
.

Denote, similarly as for the reliability metrics,

Resci = Res(G |Xi = 1) ( 6= Res(Gci ) if the graph is G)

and
Resdi = Res(G |Xi = 0) = Res(Gdi ).

24 / 33



The resilience metric Monte Carlo standard and rare events Back to the resilience Conclusions

Theorem 1: σi =
Resci − Res

1 − ri
=

Res − Resdi
ri

.

Theorem 2: The expression

σ̂i =
Xi − ri
ri (1 − ri )

NCP

defines an unbiased estimator of σi .

This means that the computation of the gradient of Res comes
almost for free following the “virtual table” approach.
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More metrics

In the rare event case, we obviously have Res very close to
(
n
2

)
.

A different way of having a deeper view of what happens in this case
is to explore the situation where there is something broken, given the
fact that we are using performability metrics here.

We propose to look, for instance, at conditional metrics such as
E(NCP | NCC ≥ 2).

Another possible direction to look at is to count the number of pairs
of nodes between which there are at least 2 edge-disjoint working
paths, which we denote by NCP2 here, and, for instance, to explore
the conditional metric E(NCP2 | NCC ≥ 2).

Common point with previous metrics? Their evaluation (and that of
their gradients) are immediate using the virtual table implementation
of the standard estimator.
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An example

To provide a few illustrations of previous results, let us consider the
following model:
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Figure: A widely used Arpanet topology in network reliability, from the history of
this famous communication network.

Consider the i.i.c. case (independent and identical components), with
common elementary reliabilities = p.
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We take p = 0.999.

Using the breadth, here b = 2, the gain with respect to the standard
estimation of Res was of several hundreds, varying with the
implementation, using a library for some computations (numpy) or
not, python or C, etc.
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Figure: A covering tree on the Arpanet model.

Using this tree, we moved the gain up to some more hundreds
(typically to 500 or 600).
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Conditional metrics

To get an idea of the discriminatory power of the conditional metrics,
look at this table (for the Arpanet graph, the number of nodes is
n = 21 and

(
n
2

)
= 210):

Table: Three metrics on the Arpanet, i.i.c. case (homogeneous links).

p 0.91 0.95 0.99 0.995 0.999

E(NCC ) 1.251 1.073 1.0027 1.00066 1.000026
E(NCP) = Res 199.8 207.2 209.9 209.977 209.9991

E(NCP |NCC ≥ 2) 160.3 167.6 174.5 175.2 175.5
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Sensitivities

Consider this graph:
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Figure: Two bridges connected by a “bridge” link. We assume i.i.c., with
elementary reliability p = 0.999.

For instance,

edge {1, 2} {2, 3} {4, 5}
sensitivity 7.01 10−3 3.79 10−5 16.0
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Some conclusions:

Interest in a performability viewpoint.

Power of the “virtual table” approach, and the idea that the problem
of the standard estimator in the rare event case concerns the
combination time-variance, not the variance alone.

The method presented here offers a good improvement on the classic
one, but of course, other recent techniques (e.g. the so-called Zero
Variance IS) go further in efficiency. The method here has the interest
of allowing direct analysis of many other quantities, mentioned below.

Results on sensitivity analysis.

Idea of conditional performability metrics.

Talk based on my chapter “Network Reliability, Performability Metrics, Rare

Events and Standard Monte Carlo”, in “Advances in Modeling and Simulation –

Festschrift for Pierre L’Ecuyer”, edited by Zdravko Botev, Alexander Keller,

Christiane Lemieux and Bruno Tuffin, published by Springer, December 1st, 2022,

DOI https://doi-org.passerelle.univ-rennes1.fr/10.1007/978-3-031-10193-9.
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