Explicit formulas for the variance of the Creation Spectrum and the F- Monte Carlo network reliability estimation methods

Héctor Cancela¹ Leslie Murray² Gerardo Rubino³

¹Facultad de Ingeniería Universidad de la República Montevideo, Uruguay

²Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario Rosario, Argentina

> ³INRIA-Rennes Bretagne Atlantique, Campus de Beaulieu Rennes, France

AIM OF THIS TALK

Present work-in-progress analyzing the variance of three Monte Carlo methods for network reliability estimation:

- Standard Monte Carlo
- F-Monte Carlo
 E. Canale, F. Robledo, P. Romero, P. Sartor Monte Carlo methods in diameter-constrained reliability. Optical Switching and Networking, 14, 134-148, 2014.
- Creation Spectrum
 B. Gertsbakh, Y. Shpungin, Models of Network Reliability Analysis, Combinatorics, and Monte Carlo, CRC Press, Boca Raton, 2012.

TALK OUTLINE

- STATIC NETWORK RELIABILITY MODEL
- 2 STANDARD MONTE CARLO
- **3** F-Monte Carlo
- **4** Creation Spectrum
- **5** Discussion and conclusions

STATIC NETWORK RELIABILITY MODEL

- Network topology: graph G = (V, E), with |V| = n and |E| = m.
- Nodes are perfect.
- Links fail independently from each other.
- State of link i: $X_i = \begin{cases} 1 \text{ w.p. } p_i & i^{th} \text{ link operational or } up \\ 0 \text{ w.p. } q_i = 1 r_i & i^{th} \text{ link failed or } down \end{cases}$
- Homogeneous network model: $p_i = p$ and $q_i = q = 1 p$, i = 1, ..., m.
- Network state space $\Omega = \{0, 1\}^m$.
- State of the network: random vector $\mathbf{X} = (X_1, \dots, X_m) \in \Omega$.
- Configuration $\mathbf{x} = (x_1, \dots, x_m)$: any possible value of \mathbf{X} .

$$P(\mathbf{X} = \mathbf{x}) = \prod_{i} P(X_i = x_i).$$

STATIC NETWORK RELIABILITY MODEL (2)

- Ω is the union of two disjoint subspaces, one of which associated to a network up condition, and the other one associated to a network down condition.
- Usually, network up means that a subset $K \subseteq V$ of nodes is connected by the up links, and network down means that K of nodes is disconnected.
- Structure function $\phi(\mathbf{X}) \in \{0,1\}$: $\phi(\mathbf{X}) = 0$ means that network is down, whereas $\phi(\mathbf{X}) = 1$ means that network is up.
- Network reliability, R, and network unreliability, Q:

$$R = \mathbb{P}\{\phi(\mathbf{X}) = 1\}$$
 and $Q = \mathbb{P}\{\phi(\mathbf{X}) = 0\} = 1 - R$.

 Computing network reliability is a well-known hard computational problem (in #P class).

NETWORK RELIABILITY POLYNOMIAL

• Partition $\Omega = \{0, 1\}^m$ in subsets:

$$\Omega_j = \left\{ \mathbf{x} \in \Omega : \sum_{i=1}^m x_i = j \right\} \quad j = 0, \dots, m,$$

$$|\Omega_j| = {m \choose j}$$
.

• Per link state independency, for any $\mathbf{x} \in \Omega_j$, $P(\mathbf{X} = \mathbf{x}) = p^j q^{m-j}$, then

$$P(\mathbf{X} \in \Omega_j) = \binom{m}{j} p^j q^{m-j} = M_j.$$

- α_j : fraction of configurations in every Ω_j such that $\phi(\mathbf{x}) = 1$.
- Network reliability polynomial:

$$R = \sum_{j=1}^{m} \alpha_j \binom{m}{j} p^j q^{m-j} = \sum_{j=1}^{m} \alpha_j M_j.$$

STANDARD MONTE CARLO METHOD

The classic standard Monte Carlo estimation is based on sampling N independent copies of \mathbf{X} from the original distribution $\mathbb{P}\{X_i=1\}=p$, $\mathbb{P}\{X_i=0\}=q=1-p$, $i=1,\ldots,m$:

$$\widehat{R}_{S} = \frac{1}{N} \sum_{i=1}^{N} \phi\left(\mathbf{X}^{(i)}\right)$$

Its variance is:

$$\mathbb{V}\{\widehat{R}_{S}\} = \frac{1}{N^{2}} \mathbb{V}\left\{\sum_{i=1}^{N} \phi\left(\mathbf{X}^{(i)}\right)\right\} = \frac{1}{N} \mathbb{V}\left\{\phi\left(\mathbf{X}^{(i)}\right)\right\}$$
$$= \frac{1}{N} R(1-R) = \frac{1}{N} R - R^{2}$$
$$= \frac{1}{N} \left[\sum_{j=1}^{m} \alpha_{j} M_{j} - \left(\sum_{j=1}^{m} \alpha_{j} M_{j}\right)^{2}\right]$$

F-Monte Carlo

F-Monte Carlo is based on computing unbiased estimators $\hat{\alpha}_j$ for every α_j in order to build an unbiased network reliability estimator:

$$\widehat{R}_{\mathsf{F}} = \sum_{j=1}^{m} \widehat{\alpha}_{j} M j$$

Define random vector \mathbf{Y}_j uniformly distributed in Ω_j (i.e., a random vector of size m, composed of j ones and m-j zeros): Then applying Standard Monte Carlo for estimating α_i :

$$\widehat{\alpha}_j = \frac{1}{N_j} \sum_{i=1}^{N_j} \phi\left(\mathbf{Y}_j^{(i)}\right) \quad j = 0, \dots, m,$$

where $\mathbf{Y}_{i}^{(i)}$, $i=1,\ldots,N_{j}$, is a set of independent samples of \mathbf{Y}_{j} .

F-Monte Carlo

Replacing each $\widehat{\alpha}_j$ by its estimator, the F–Monte Carlo network unreliability estimator is:

$$\widehat{R}_{\mathsf{F}} = \sum_{j=1}^{m} \left(\frac{1}{N_{j}} \sum_{i=1}^{N_{j}} \phi\left(\mathbf{Y}_{j}^{(i)}\right) \right) M_{j}$$

and its variance is

$$\mathbb{V}\{\widehat{R}_{\mathsf{F}}\} = \mathbb{V}\left\{\sum_{j=1}^{m} \left(\frac{1}{N_{j}} \sum_{i=1}^{N_{j}} \phi\left(\mathbf{Y}_{j}^{(i)}\right)\right) M_{j}\right\}$$

$$= \sum_{j=1}^{m} \frac{M_{j}^{2}}{N_{j}^{2}} \mathbb{V}\left\{\sum_{i=1}^{N_{j}} \phi\left(\mathbf{Y}_{j}^{(i)}\right)\right\}$$

$$= \sum_{i=1}^{m} \frac{M_{j}^{2}}{N_{j}^{2}} N_{j} \mathbb{V}\left\{\phi\left(\mathbf{Y}_{j}^{(i)}\right)\right\} = \sum_{i=1}^{m} \frac{M_{j}^{2}}{N_{j}} \alpha_{j} (1 - \alpha_{j})$$

F-MC VARIANCE (2)

Distributing N Monte Carlo replications uniformly between the coefficient estimators $(N_j = N/m, j = 1, ..., m)$, then:

$$\mathbb{V}\{\widehat{R}_{\mathsf{F}}\} = \sum_{j=1}^{m} \frac{m}{N} M_{j}^{2} (\alpha_{j} - \alpha_{j}^{2})$$

$$= \frac{m}{N} \sum_{j=1}^{m} M j^{2} (\alpha_{j} - \alpha_{j}^{2})$$

$$= \frac{m}{N} \left[\sum_{j=1}^{m} \alpha_{j} M j^{2} - \sum_{j=1}^{m} \alpha_{j}^{2} M j^{2} \right]$$

CREATION SPECTRUM MONTE CARLO

Auxiliary dynamic model: initially all links are *down*; they are repaired sequentially (only taking into account the order, without considering times between repairs).

Reparation order is a *permutation* π of the links in E:

$$\pi = \{e_{(1)}, e_{(2)}, \ldots, e_{(m)}\}$$

When all the links are *down*, the network is also *down*. It becomes operational simultaneously with the repair of some $e_{(k)}$, $1 \le k \le m$. We call *anchor* of π , denoted $a(\pi)$, to the number k. π is a random variable on the state space Π .

 $a(\pi)$ is a random variable on $\{1, 2, ..., m\}$; its PDF is called Creation Spectrum:

$$C_S = (f_1, f_2, \ldots, f_m),$$

where $f_k = \mathbb{P}\{a(\pi) = k\}, k = 1, ..., m$.

CREATION SPECTRUM MONTE CARLO (2)

The Cumulative Creation Spectrum is the corresponding CDF:

$$CC_S = (F_1, F_2, \ldots, F_m)$$

where $F_k = \sum_{i=1}^{k} f_i, \ k = 1, ..., m$.

By a combinatorial argument, it can be shown that $F_k = \alpha_k$ (defined previously - fraction of up configurations in Ω_i), and

$$R = \sum_{j=1}^{m} \alpha_j M_j$$

Then

$$R = \sum_{j=1}^{m} \left(\sum_{k=1}^{j} f_k \right) M_j = \sum_{j=1}^{m} f_j \left(\sum_{k=j}^{m} M_k \right)$$

CREATION SPECTRUM MONTE CARLO (3)

Calling $U_j = \sum_{k=j}^m M_k$,

$$R = \sum_{j=1}^{m} f_j U_j$$

If we generate randomly N permutations, (π_1, \ldots, π_N) , and for each one of them, we find its anchor, $a(\pi_k)$, if A_k is the number of permutations π for which $a(\pi) = k$, then $\widehat{f_k} = A_k/N$ is an estimator of f_k , $k = 1, \ldots, m$.

The Creation Spectrum Monte Carlo estimator is:

$$\widehat{R}_{CS} = \sum_{i=1}^{m} \widehat{f}_{i} U_{j}.$$

CREATION SPECTRUM VARIANCE

Define the indicator random vector $\mathbf{B} = (B_1, \dots, B_m)$:

$$B_j = \begin{cases} 1 & \text{if } a(\pi) = j \\ 0 & \text{otherwise,} \end{cases}$$
 $j = 1, \dots, m.$

If we sample N independent permutations $\pi^{(i)}$ and compute the corresponding samples of \mathbf{B} , then:

$$\widehat{f_j} = \frac{1}{N} \sum_{i=1}^{N} B_j^{(i)}$$

The Creation Spectrum estimator can be written as:

$$\widehat{R}_{CS} = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{m} B_{j}^{(i)} U_{j}$$

CREATION SPECTRUM VARIANCE (2)

Then

$$\mathbb{V}\{\widehat{R}_{CS}\} = \mathbb{V}\left\{\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{m} B_{j}^{(i)} U_{j}\right\}$$

$$= \frac{1}{N^{2}} \mathbb{V}\left\{\sum_{i=1}^{N} \sum_{j=1}^{m} B_{j}^{(i)} U_{j}\right\}$$

$$= \frac{1}{N^{2}} \sum_{i=1}^{N} \mathbb{V}\left\{\sum_{j=1}^{m} B_{j}^{(i)} U_{j}\right\}$$

Here, $Z^{(i)}$, i = 1, ..., N, are independent samples from random variable Z, taking values U_i with probabilities f_i , j = 1, ..., m.

CREATION SPECTRUM VARIANCE (3)

$$\mathbb{V}\{Z\} = \mathbb{E}\{Z^2\} - \mathbb{E}\{Z\}^2 = \sum_{j=1}^{m} f_j U_j^2 - \left(\sum_{j=1}^{m} f_j U_j\right)^2$$

Finally:

$$\mathbb{V}\{\widehat{R}_{C_S}\} = \frac{1}{N^2} \sum_{i=1}^{N} \mathbb{V}\left\{Z^{(i)}\right\} = \frac{1}{N} \mathbb{V}\left\{Z\right\}$$
$$= \frac{1}{N} \left[\sum_{j=1}^{m} f_j U_j^2 - \left(\sum_{j=1}^{m} f_j U_j\right)^2\right]$$

where
$$f_1 = \alpha_1$$
, $f_j = \alpha_j - \alpha_{j-1}$, $j = 2, ..., m$, and $U_j = \sum_{i=j}^m M_i = \sum_{i=j}^m \binom{m}{i} p^i q^{m-i}$.

VARIANCE FORMULAS FOR THE THREE METHODS

$$\mathbb{V}\{\widehat{R}_{S}\} = \frac{1}{N} \left[\sum_{j=1}^{m} \alpha_{j} M j - \left(\sum_{j=1}^{m} \alpha_{j} M j \right)^{2} \right]$$

$$\mathbb{V}\{\widehat{R}_{F}\} = \frac{m}{N} \left[\sum_{j=1}^{m} \alpha_{j} M j^{2} - \sum_{j=1}^{m} \alpha_{j}^{2} M j^{2} \right]$$

$$\mathbb{V}\{\widehat{R}_{CS}\} = \frac{1}{N} \left[\sum_{j=1}^{m} f_{j} U_{j}^{2} - \left(\sum_{j=1}^{m} f_{j} U_{j} \right)^{2} \right]$$

$$M_{j} = \binom{m}{j} p^{j} q^{m-j}; U_{j} = \sum_{k=j}^{m} M_{k}; f_{j} = \alpha_{j} - \alpha_{j-1}$$

NUMERICAL EXAMPLE

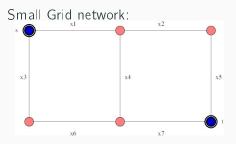


TABLE: Exact variances of Standard Monte Carlo, F–Monte Carlo, and Destruction Spectrum Monte Carlo, with sample size $N=10^8$

	Q = 1 - R	$\mathbb{V}\{\widehat{Q}_{S}\}$	$\mathbb{V}\{\widehat{Q}_{F}\}$	$\mathbb{V}\{\widehat{Q}_{DS}\}$
r = 0.9	4.12E-02	3.95E-10	1.74E-10	2.88E-11
r = 0.99	4.03E-04	4.03E-12	4.31E-14	6.24E - 15
r = 0.999	4.00E-06	4.00E-14	4.71E-18	6.74E-19

CONCLUSIONS AND LINES OF FUTURE WORK

- We showed explicit formulas using α_i values.
- Computing α_j is also computationally expensive, so using the formulas to compute exact variances is only feasible for small networks, and in general is as difficult as computing the reliability.
- Nevertheless, formulas can be used to analitically compare methods' precisions.
- Lines of future work: use the formulas over the (unknown) α_j to provide a priori comparisons of the precision of the methods, to find better parameters or importance-sampling versions (in the case of F-Monte Carlo); and to study asymptotics.

Thanks!