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Context: Covid desease

High peaks overcrowd the healthy system.

Figure: Chile’s data from CMM Covid-19 Visualization:
https://covid-19vis.cmm.uchile.cl/
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SIR model

A classical SIR model corresponds to:
Ṡ = −βSI
İ = βSI − γI
Ṙ = γI

(SIR)

where:

S : portion of susceptible individuals.

I : portion of infected individuals.

R: portion of recovered individuals.

β: transmission rate.

γ: recovery rate.

And
S + I + R = 1.

4 / 28



SIR model

A classical SIR model corresponds to:
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Example

Example

Morris, D. H., Rossine, F. W., Plotkin, J. B., and Levin, S. A. (2021).
Optimal, near-optimal, and robust epidemic control. Communications
Physics, 4(1), 1-8.

They worked with a SIR model minimizing maxt∈[0,T ] I (t).

Ṡ(t) =− b(t)βS(t)I (t)

İ (t) = b(t)βS(t)I (t)− γI (t)

Ṙ(t) =γI (t)

Interventions b(t) are modeled as a factor in rate transmission which take
place in a interval [ti , ti + τ ].
Remark: They didn’t use any optimal control tool in their work.
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Formulation general problem

We consider the following dynamical system in a domain D ⊂ Rn+1.{
ẋ = f (x , y , u)
ẏ = g(x , y , u)

(Dynamics)

U := {u(·) : [0,T ] 7→ U,mesurable} and (x0, y0) ∈ D, T > 0.

The solutions set:

S := {(x(·), y(·)) ∈ AC([0,T ],Rn+1), sol. of (Dynamics) for u(·) ∈ U
with (x(0), y(0)) = (x0, y0)}

The optimal control problem:

P : inf
u(·)∈U

(
max

t∈[0,T ]
y(t)

)
= inf

(x(·),y(·))∈S

(
max

t∈[0,T ]
y(t)

)
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State of art

L∞-criterion.
inf
u(·)

ess sup
t∈[t0,T ]

y(t)

where y(t) = η(ξ(t)) with ξ(·) solution of a controlled system
ξ̇ = φ(ξ, u), ξ(t0) = ξ0.

Typically

min
(
∂tV + inf

u
∂ξV .φ(x , u) , V − η

)
= 0 .

There is no practical tools to solve such problems, to the best of our
knowledge.

7 / 28



State of art

L∞-criterion.
inf
u(·)

ess sup
t∈[t0,T ]

y(t)

where y(t) = η(ξ(t)) with ξ(·) solution of a controlled system
ξ̇ = φ(ξ, u), ξ(t0) = ξ0.

Typically

min
(
∂tV + inf

u
∂ξV .φ(x , u) , V − η

)
= 0 .

There is no practical tools to solve such problems, to the best of our
knowledge.

7 / 28



State of art

L∞-criterion.
inf
u(·)

ess sup
t∈[t0,T ]

y(t)

where y(t) = η(ξ(t)) with ξ(·) solution of a controlled system
ξ̇ = φ(ξ, u), ξ(t0) = ξ0.

Typically

min
(
∂tV + inf

u
∂ξV .φ(x , u) , V − η

)
= 0 .

There is no practical tools to solve such problems, to the best of our
knowledge.

7 / 28



Optimal control problems

Our objective: use a more classical Mayer, Lagrange or Bolza formulation.

min g(x(T )) +

∫ T

0
f 0(t, x(t), u(t))dt

ẋ = f (t, x(t), u(t)) t ∈ [0,T ]

u ∈ U , x(0) ∈ M0, x(T ) ∈ M1

State constraints:
x(t) ∈ A, t ∈ [0,T ]
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Reformulation P0

The first basic reformulation is

P0 : inf
u(·)∈U

z(T )

for the extended dynamics in D × R
ẋ = f (x , y , u)
ẏ = g(x , y , u)
ż = 0

under the state constraint

C : z(t)− y(t) ≥ 0, t ∈ [0,T ]

where (x(0), y(0)) = (x0, y0) and z(0) is free.
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Reformulation P1

The dynamic in D × R:
ẋ = f (x , y , u)
ẏ = g(x , y , u)
ż = max(g(x , y , u), 0)(1− v) , v ∈ [0, 1]

(Dynz,v )

the optimal control problem:

P1 : inf
(u(·),v(·))

z(T )

under the constraint:

C : z(t) ≥ y(t), t ∈ [0,T ]

where x(·), y(·), z(·) is solution of (Dynz,v ) with x(0) = x0, y(0) = y0,
z(0) = y0.
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Idea

Figure: Illustration of the function z (red) corresponding to a function y (blue)
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Equivalence

Hypotheses

1 U is a compact set.

2 The maps f and g are C 1 on D × U.

3 The maps f and g have linear growth, that is there exists a number
C > 0 such that

||f (x , y , u)||+ |g(x , y , u)| ≤ C (1 + ||x ||+ |y |), (x , y) ∈ D, u ∈ U

12 / 28



Equivalence

Theorem

For any control u(·) ∈ U , the optimal control problem

inf
v∈V

z(T ) under the constraint C (1)

admits an optimal solution. Moreover, an optimal solution verifies

z(T ) = max
t∈[0,T ]

y(t). (2)

and is reached for a control v(·) that takes values in {0, 1}.

13 / 28



Equivalence

Theorem

If (u?(·), v?(·)) is optimal for P1, then u?(·) is optimal for P.

Conversely, if u?(·) is optimal for P, then (u?(·), v?(·)) is optimal for P1

where v?(·) is optimal for the problem (1) fixing u?(·).

14 / 28
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Reformulation P2

The extended dynamics in D × R.
ẋ = f (x , y , u)
ẏ = g(x , y , u)
ż = max(g(x , y , u), 0)(1− v) , v ∈ [0, 1]

(Dynz,v )

the optimal control problem

P2 : inf
(u(·),v(·))

z(T )

under the constraint

Cm : max(y(t)− z(t), 0)(1− v(t)) + z(t)− y(t) ≥ 0, a.e. t ∈ [0,T ]

where x(·), y(·), z(·) is solution of (Dynz,v ) with x(0) = x0, y(0) = y0,
z(0) = y0.
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Reformulation P3

We posit Π = (x , y , z) ∈ D × R with dynamic:

Π̇ ∈ F (Π) :=
⋃

(u,v)∈U×[0,1]

 f (x , y , u)
g(x , y , u)

h(x , y , z , u, v)

 (3)

and
h(x , y , z , u, v) = max(g(x , y , u), 0)(1− v1R+(z − y)).

Let S` := {Π(·) ∈ AC ., Π̇ ∈ F (Π) and Π(0) = (x0, y0, y0)

P3 : inf
Π(·)∈S`

z(T ).

16 / 28



Equivalence

Hypotheses

∀(x , y) ∈ D, G (x , y) :=
⋃
u∈U

[
f (x , y , u)
g(x , y , u)

]
is convex,

Proposition 1

P3 admits an optimal solution. Moreover, any optimal solution
Π(·) = (x(·), y(·), z(·)) verifies

z(T ) = max
t∈[0,T ]

y(t)

with (x(·), y(·)) solution of (Dynamics) for some control u(·) ∈ U that is
optimal for P.
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Reformulation Pθ3

A dynamic parameterized by θ > 0
ẋ = f (x , y , u)
ẏ = g(x , y , u)
ż = hθ(x , y , z , u, v)

(4)

with

hθ(x , y , z , u, v) = max(g(x , y , u), 0)(1− v e−θmax(y−z,0))

The family of Mayer problems

Pθ3 : inf
Π(·)∈Sθ

z(T )

where Sθ denotes the set of absolutely continuous solutions
Π(·) = (x(·), y(·), z(·)) of (4) for the initial condition Π(0) = (x0, y0, y0)

18 / 28



Approximation

Proposition 2

For any increasing sequence θn → +∞, the problem Pθn3 admits an
optimal solution, and for the optimal solutions (xn(·), yn(·), zn)(·)) of Pθn3 ,

(xn(·), yn(·)) converges, up to sub-sequence, uniformly to an optimal
solution (x?(·), y?(·)) of P.

its derivatives weakly to (ẋ?(·), ẏ?(·)) in L2.

zn(T )↗ maxt∈[0,T ] y
?(t).

19 / 28
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SIR model

Recall the SIR dynamic

Ṡ(t) =− (1− u(t))βS(t)I (t)

İ (t) = (1− u(t))βS(t)I (t)− γI (t)

Ṙ(t) =γI (t)

We add the constraint ∫ T

0
u(t)dt ≤ Q

And we want
min
u

max
t∈[0,T ]

I (t)
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Analytical solution

We proved that for an initial conditions I0 = I (0) > 0 and
S0 = S(0) > Sh = R−1

0 = γ/β, the optimal solution is the feedback
control

ψ(I ,S) :=

{
1− Sh

S if I = Ī and S > Sh

0 otherwise

where

Ī :=
I0 + S0 − Sh − Sh log

(
S0
Sh

)
QβSh + 1

For numerical examples:

β γ T Q S(0) I (0) Ī

0.21 0.07 300 28 1− 10−6 10−6 0.1015
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Analytical solution
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Figure: The optimal solution for the SIR problem
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Numerical solutions

To improve convergence we used the approximation:

log
(
eλξ + 1

)
λ

−→
λ→+∞

max(ξ, 0), ξ ∈ R

Using λ = 100 we obtain

problem max
t∈[0,T ]

y(t) computation time

P0 0.1015 10 s
P1 0.1015 12 s
P2 0.1015 13 s

Table: Comparison of performances for problems P0, P1, P2
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Numerical solutions
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Figure: Comparisons of numerical results for the methods P0, P1, P2

24 / 28



Numerical solutions
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Conclusion and ongoing work

Formulation P0 P1 or P2 P3 Pθ3
suitable to direct methods yes yes no yes
suitable to HJB methods no yes yes yes
suitable to shooting methods no no no yes
provides approximations from below no no no yes

Table: Comparison of the different formulations
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Conclusion and ongoing work

We have proposed two kinds of formulations: one with state or
mixed constraints and another one without any constraint.

For the latter one, we have proposed an approximation scheme
generated. Although this second approach requires larger
computation time, it complements the first ones providing
approximations of the optimal value from above.

The study of necessary optimality conditions will be the matter of a
future work.
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Thanks!
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Assumptions

Hypotheses

1 U is a compact set.

2 The maps f and g are C 1 on D × U.

3 The maps f and g have linear growth, that is there exists a number
C > 0 such that

||f (x , y , u)||+ |g(x , y , u)| ≤ C (1 + ||x ||+ |y |), (x , y) ∈ D, u ∈ U
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Sketch of proof

Consider the augmented dynamics

Π̇ ∈ F †(Π) :=
⋃

(u,v ,α)∈U×[0,1]2

 f (x , y , u)
g(x , y , u)

h†(x , y , z , u, v , α)

 (5)

with

h†(x , y , z , u, v , α) = (1− α)h(x , y , z , u, v) + αmax
w∈U

h(x , y , z ,w , 0)

=⇒ Π?(·) = (x?(·), y?(·), z?(·)) of (5) optimal

Any admissible solution (x(·), y(·), z(·)) of P1 belongs to S` ⊂ S†` . Then

z?(T ) ≤ inf{z(T ); (x(·), y(·), z(·)) sol. of (Dynz,v ) with C}. (6)
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⋃

(u,v ,α)∈U×[0,1]2

 f (x , y , u)
g(x , y , u)

h†(x , y , z , u, v , α)

 (5)

with

h†(x , y , z , u, v , α) = (1− α)h(x , y , z , u, v) + αmax
w∈U

h(x , y , z ,w , 0)

=⇒ Π?(·) = (x?(·), y?(·), z?(·)) of (5) optimal

Any admissible solution (x(·), y(·), z(·)) of P1 belongs to S` ⊂ S†` . Then

z?(T ) ≤ inf{z(T ); (x(·), y(·), z(·)) sol. of (Dynz,v ) with C}. (6)
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Sketch of proof

Besides, any solution Π(·) = (x(·), y(·), z(·)) in S†` verifies z(t) ≥ y(t)

z(T ) ≥ max
t∈[0,T ]

y(t) (7)

Thanks to Assumptions 1 and 2, we obtain

z?(T ) ≥ max
t∈[0,T ]

y?(t) ≥ inf
u∈U

{
max

t∈[0,T ]
y(t); (x(·), y(·)) sol. of (Dynamics)

}
(8)

where (x?(·), y?(·)) is solution of (Dynamics) for a certain u?(·) ∈ U .
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Approximation by norm Lp
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Figure: Numerical solutions for problems PLp
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Approximation by norm Lp

p max
t∈[0,T ]

y(t) ||y(t)||p computation time

2 0.119653 1.0222 34 s
5 0.105244 0.2474 14 s

10 0.105375 0.15678 13 s
15 0.105170 0.13549 17 s

Table: Comparison of the numerical results with the Lp approximation
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