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Context: Covid desease

High peaks overcrowd the healthy system.
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Figure: Chile's data from CMM Covid-19 Visualization:
https://covid-19vis.cmm.uchile.cl/
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SIR model

A classical SIR model corresponds to:

S=-p5SI
{ | = BSI—~l (SIR)
R =l
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SIR model

A classical SIR model corresponds to:

S=-p5SI
| = BSI—~l (SIR)
R = 1

where:
@ S: portion of susceptible individuals.
@ /: portion of infected individuals.
@ R: portion of recovered individuals.
@ (: transmission rate.

@ 7: recovery rate.
And
S+I+R=1.
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Morris, D. H., Rossine, F. W., Plotkin, J. B., and Levin, S. A. (2021).
Optimal, near-optimal, and robust epidemic control. Communications
Physics, 4(1), 1-8.
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Morris, D. H., Rossine, F. W., Plotkin, J. B., and Levin, S. A. (2021).
Optimal, near-optimal, and robust epidemic control. Communications
Physics, 4(1), 1-8.

They worked with a SIR model minimizing maxcjo, 77 /(%)

$(8) = — B(£)BS(8)I(t)
i(£) = B(1)BS(£)1(2) — 1(t)
R(t) =1(t)

Interventions b(t) are modeled as a factor in rate transmission which take
place in a interval [t;, t; + 7].
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Morris, D. H., Rossine, F. W., Plotkin, J. B., and Levin, S. A. (2021).
Optimal, near-optimal, and robust epidemic control. Communications
Physics, 4(1), 1-8.

They worked with a SIR model minimizing maxcjo, 77 /(%)

5(t) = — b(t)BS(t)I(t)
I(t) = b(£)55(8)I(t) —~I(¢)
R(t) =I(t)
Interventions b(t) are modeled as a factor in rate transmission which take

place in a interval [t;, t; + 7].
Remark: They didn't use any optimal control tool in their work.
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Formulation general problem

We consider the following dynamical system in a domain D C R"*1.

{ % = f(x,y, u)

) Dynamics
y=g(x,y,u) (Dy )

U :={u(-): [0, T] = U, mesurable} and (xo,y0) € D, T > 0.
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Formulation general problem

We consider the following dynamical system in a domain D C R"*1.

x = f(x,y,u) -

) Dynamics
{ y=g(xy,u) (by )
U :={u(-): [0, T] = U, mesurable} and (xo,y0) € D, T > 0.
The solutions set:

= {(x(-),y(-)) € AC([0, T],R™*1), sol. of (Dynamics) for u(-) € U
with (x(0), y(0)) = (x0, yo)}
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Formulation general problem

We consider the following dynamical system in a domain D C R"1.

{ % = f(x,y, u)

) Dynamics
y=g(x,y,u) (Dy )

U :={u(-): [0, T] = U, mesurable} and (xo,y0) € D, T > 0.

The solutions set:

S = {(x("),y(-)) € AC([0, T],R"*1), sol. of (Dynamics) for u(-) € U
with (x(0), y(0)) = (x0, yo)}

The optimal control problem:
P:  inf < max (t)> = inf ( (t)>
u(-)eU \t€[0,T] (x()y())es [0 T]
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State of art

@ [®°-criterion.

inf esssup y(t)
u(*) tefty, T]

where y(t) = n(£(t)) with &(-) solution of a controlled system
§ = ¢(&, u), £(to) = So-
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State of art

@ [®°-criterion.

inf esssup y(t)
u(*) tefty, T]
where y(t) = n(£(t)) with &(-) solution of a controlled system
§ = ¢(&, u), £(to) = So-
o Typically

min

Y

0:V +inf0:V.o(x, u) , V—n) =0.
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State of art

@ [®°-criterion.

inf esssup y(t)
u(*) tefty, T]
where y(t) = n(£(t)) with &(-) solution of a controlled system
§ = ¢(&, u), £(to) = So-
o Typically
min (8tV +inf o V.p(x,u), V — n) =0.

@ There is no practical tools to solve such problems, to the best of our
knowledge.
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Optimal control problems

Our objective: use a more classical Mayer, Lagrange or Bolza formulation.
T
min  g(x(T)) +/ FO(t, x(t), u(t))dt
0

x = f(t,x(t), u(t)) te [0, T]

uel, X(O) € My, X(T) e M;
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Optimal control problems

Our objective: use a more classical Mayer, Lagrange or Bolza formulation.
T
min  g(x(T)) +/ FO(t, x(t), u(t))dt
0
x = f(t,x(t), u(t)) tel0, T]

uel, X(O) € My, X(T) e M;

State constraints:
x(t)e A, te]0,T]
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@ Formulations with constraints
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© Towards a general model

@ Formulations with constraints
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Reformulation P

The first basic reformulation is

for the extended dynamics in D x R

x = f(x,y,u)
y =g(x,y,u)
=0

under the state constraint
C: z(t)—y(t)>0,tel0,T]

where (x(0), y(0)) = (xo0, yo) and z(0) is free.
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© Towards a general model
@ Formulations with constraints

@ Reformulation Py
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Reformulation P;

The dynamic in D x R:
x=f(x,y,u)
y:g(xaya U) (DynZ,V)
z=max(g(x,y,u),0)(1—v) ,vel0,1]

the optimal control problem:

Py : inf  z(T
ity 2

under the constraint:
C: z(t)>y(t), tel0,T]

where x(+), y(-), z(+) is solution of (Dyn, ) with x(0) = xo, y(0) = yo,
z(0) = yo.
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o

Figure: lllustration of the function z (red) corresponding to a function y (blue)
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Equivalence

Hypotheses

@ U is a compact set.
@ The maps f and g are C* on D x U.

© The maps f and g have linear growth, that is there exists a number
C > 0 such that

(3, y, u)ll + g%, y, w)| < C(L+[[x][ + [y]), (x,y) €D, ue U

v
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Equivalence

Theorem

For any control u(-) € U, the optimal control problem

im; z(T) under the constraint C
ve

admits an optimal solution. Moreover, an optimal solution verifies

) = t).
z(T) tg?(i>;]y()

and is reached for a control v(-) that takes values in {0,1}.
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Equivalence

If (u*(-), v*(+)) is optimal for Py, then u*(-) is optimal for P.

*

Conversely, if u*(-) is optimal for P, then (u*(-),v

)) is optimal for Py
where v*(-) is optimal for the problem (1) fixing u*(-).

(
(-
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© Towards a general model
@ Formulations with constraints

@ Reformulation P,
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Reformulation P,

The extended dynamics in D x R.
x=f(x,y,u)
y:g(xaya U) (DynZ,V)
z= max(g(x,y, u),O)(l - V) V€ [07 ]-]

the optimal control problem

P> - inf  z(T
25 ity ET)

under the constraint
Cm: max(y(t) —z(t),0)(1 —v(t)) +z(t) —y(t) >0, ae te][0,T]

where x(-), y(-), z(+) is solution of (Dyn, ) with x(0) = xo, y(0) = yo,
z(0) = yo.
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© Towards a general model

@ Formulations without state constraints
@ Reformulation P3
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Reformulation P;

We posit 1 = (x,y,z) € D x R with dynamic:
_ f(x,y,u)
nerm:= Y g(x,y,u) (3)
(uv)eUx[oa] | h(x,y,z,u,v)

and
h(X7y727 u, V) = max(g(x,y, U), 0)(1 - VILRJr(Z - .y))
Let S, := {M(:) € AC.,11 € F(MN) and N(0) = (x0, Yo, o)

Ps - inf T).
3 ”(I‘?GSZ 2(T)
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Equivalence

Hypotheses

[f(x,y, u)

] is convex,
g(x,y,u)
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Equivalence

Hypotheses

V(x,y) €D, G(x,y):= U
uel

[f(x,y, u)

] is convex,
g(x,y,u)

| A\

Proposition 1

P3 admits an optimal solution. Moreover, any optimal solution
() = (x(-),y(-), z(+)) verifies

with (x(-), y(-)) solution of (Dynamics) for some control u(-) € U that is
optimal for P.
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© Towards a general model

@ Formulations without state constraints

@ Reformulation P¥¢
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Reformulation 733?

A dynamic parameterized by 6 > 0

x=f(x,y,u)
y =g(x,y,u) (4)
z=hy(x,y,z,u,v)

with
ho(x,y, 2, u,v) = max(g(x, y, u),0)(1 — v e ! maLr=20))
The family of Mayer problems

0. inf T
P3 rl(l-;]ESQ Z( )

where Sy denotes the set of absolutely continuous solutions
() = (x(),y(+), z(+)) of (4) for the initial condition MN(0) = (xo, yo, o)
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Approximation

For any increasing sequence 6,, — +oo, the problem 7339” admits an
optimal solution, and for the optimal solutions (xn(-), yn(-), z2)(+)) of PY",

@ (xn(+),yn(+)) converges, up to sub-sequence, uniformly to an optimal
solution (x*(+),y*(-)) of P.

e its derivatives weakly to (x*(-), y*(-)) in L2.

° Zn(T) e MaX¢e(o, T] y*(t).
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© Numerical examples
@ Application to the classical SIR model
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SIR model

Recall the SIR dynamic

$(8) = — (1 - u(t))BS(D)I(1)
i(£) = (1 — u(£))BS(£)1(8) = 7I(2)
R(t) =1(t)
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SIR model

Recall the SIR dynamic

S(t) = — (1 — u(2)BS(1)1(t)
I(t) = (1 — u(t))BS(t)I(t) — 7I(t)
R(t) =71(t)

We add the constraint

-
/ u(t)dt < Q
0
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SIR model

Recall the SIR dynamic

S(t) = — (1 — u(2)BS(1)1(t)

I(t) = (1 — u(1))BS (1) (t) — vI(¢)

R(t) =7I(1)
We add the constraint -

/ u(t)dt < Q
0

And we want

[ I(t
"I 0
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Analytical solution

We proved that for an initial conditions Iy = /(0) > 0 and

So = S(0) > Sy = Ry = /3, the optimal solution is the feedback
control

1-3 ifl=Tand S>§
G(l,§) =4 5 L= land oo
0 otherwise

where
IO + 50 — Sh — Sh |Og <%2>
QRpBS,+1

[:=

21/28



Analytical solution

We proved that for an initial conditions Iy = /(0) > 0 and

So = S(0) > Sy = Ry = /3, the optimal solution is the feedback
control

ol 5)__{1—5; if [=Tand S>S,

0 otherwise
where
lo+ So— Sp— Splog <%2>
QRpBS,+1

[:=

For numerical examples:

Bl v | T]Q| s |10
0.21]0.07 30028 |1—-10° |10

)| T
—¢ ] 0.1015

21/28



Analytical solution

Suceptible S Infected | Optimal control u
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Figure: The optimal solution for the SIR problem
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Numerical solutions

To improve convergence we used the approximation:

log (e* +1)
B )\_)—+>OO max(£,0), £€R

23/28



Numerical solutions

To improve convergence we used the approximation:

log (e* +1)
B )\_)—+>OO max(£,0), £€R

Using A = 100 we obtain

problem | max y(t) | computation time
te[0,T]
Po 0.1015 10s
P1 0.1015 12s
P 0.1015 13s

Table: Comparison of performances for problems Py, Py, P
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Numerical solutions

010 o \ - Py os N )
' AY - yPy i\ LY
H \ - yP 05 HEN - uP
0.08 i \ o\
i \ HEEA
! \ RN
i \ 04 H \
! \ H \
006 | \ § \
! \ H \
H \ 03 i \
| N : \
004 H \ i \
H \ 02 i \
| \ i \
| \ i \
002 { \ H \
/ N, 01 H \
/ . i \
e i \
) 0o
3 s 10 150 200 250 300 o s 10 150 20 250 300
010 10
0.08 y 09
006 / o8 |
00a{ / o7
/ |
|
: |
! 061 |
002y - zp, |
H zr Py
oo0d | --- zP;, 05 --- VP,
3 s 10 150 200 250 300 [ s 10 150 200 250 300

Figure: Comparisons of numerical results for the methods Py, P1, P
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Numerical solutions
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Figure: Comparision for the SIR problem
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@ Conclusion and future work
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Conclusion and ongoing work

Formulation ‘ Po ‘ Py or P> ‘ Ps ‘ 733‘?
suitable to direct methods yes yes no | yes
suitable to HJB methods no yes yes | yes
suitable to shooting methods no no no | yes
provides approximations from below | no no no | yes

Table: Comparison of the different formulations
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Conclusion and ongoing work

@ We have proposed two kinds of formulations: one with state or
mixed constraints and another one without any constraint.
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Conclusion and ongoing work

@ We have proposed two kinds of formulations: one with state or
mixed constraints and another one without any constraint.

@ For the latter one, we have proposed an approximation scheme
generated. Although this second approach requires larger
computation time, it complements the first ones providing
approximations of the optimal value from above.
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Conclusion and ongoing work

@ We have proposed two kinds of formulations: one with state or
mixed constraints and another one without any constraint.

@ For the latter one, we have proposed an approximation scheme
generated. Although this second approach requires larger
computation time, it complements the first ones providing
approximations of the optimal value from above.

@ The study of necessary optimality conditions will be the matter of a
future work.
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Assumptions

Hypotheses

@ U is a compact set.
@ The maps f and g are C* on D x U.

© The maps f and g have linear growth, that is there exists a number
C > 0 such that

(3, y, u)ll + g%, y, w)| < C(L+[[x][ + [y]), (x,y) €D, ue U

v
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Sketch of proof

Consider the augmented dynamics

M S FT(H) = g(X7y) U) (5)

f(x,y,u)
(uv,a)eUx[oa? | hi(x,y,z,u,v, a)

with

hT(X,y, zyu,v,a) = (1 —a)h(x,y,z,u,v) + « max h(x,y,z,w,0)
we

= M*(:) = (x*(:), y*(:), z*(-)) of (5) optimal
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Sketch of proof

Consider the augmented dynamics

HEFT(H) = g(X,y,U)

f(x,y,u)
(uv,a)eUx[oa? | hi(x,y,z,u,v, a)

with

hT(X,y, zyu,v,a) = (1 —a)h(x,y,z,u,v) + « max h(x,y,z,w,0)
we

= M*(:) = (x*(:), y*(:), z*(-)) of (5) optimal

Any admissible solution (x(+), y(-),z(:)) of P1 belongs to S; C S;r. Then
z*(T) <inf{z(T); (x(-),y(-),z(:)) sol. of (Dyn,,) with C}.  (6)
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Sketch of proof

Besides, any solution M(-) = (x(-),y(-), z(-)) in S verifies z(t) > y(t)

z(T) = tg§§]y(t) (7)
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Sketch of proof

Besides, any solution M(-) = (x(-),y(-), z(-)) in S verifies z(t) > y(t)

z(T) > max y(t) (7)

tel0,T]

Thanks to Assumptions 1 and 2, we obtain

2(T) = max y'(0) = jnf { max y(0) (x().y() so. of (Dynarmics)}
)

where (x*(+), y*(+)) is solution of (Dynamics) for a certain u*(-) € U.

28/28



Approximation by norm LP

state | control
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Figure: Numerical solutions for problems Py,
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Approximation by norm LP

p | max y(t) | |ly(t)|[p | computation time
te[0,T]

2 | 0.119653 1.0222 34s

5 | 0.105244 | 0.2474 14s

10 | 0.105375 | 0.15678 13s

15 | 0.105170 | 0.13549 17s

Table: Comparison of the numerical results with the LP approximation
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