RISK AVERSE MECHANISMS IN THE BRAZILIAN POWER SYSTEM

Latin American Congress on Industrial and Applied Mathematics 2023

André Luiz Diniz

Jan 31th, 2023

Power Generation Planning and Operation Overview

TARGET: to obtain an "optimal" Policy for planning purposes, to set the dispatch of hydro/thermal plants and to establish market prices

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

Cost Information for Decision Making

Energy Storage

Pumped Storage

Wind, PV/CSP power plants

Demand Response

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system-

LACIAM, Jan31th, 2023

Optimization Models for Energy Planning Developed by CEPEL

Developed by CEPEL, collaborating with scientific community

Validated in working groups in by ONS, CCEE, EPE, MME, ANEEL, as well as task forces with most power system utilities

Approved for official use by the regulatory agency

used for System planning System dispatch ONS Setting of market prices

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

Models for risk-averse energy Planning, **Hydrothermal-wind Scheduling and Price Setting**

A pesquisa que

constrói o futuro

Brazilian Interconnected System Centrally Dispatched by the Brazilian ISO (ONS)

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

A pesquisa que

constrói o futuro

Cost Minimization Generation Planning with CVaR Risk Averse Criterion - Rolling Horizon Scheme

A pesquisa que

constrói o futuro

Cepel

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-seale Brazilian system -

DAY-AHEAD Scheduling and Hourly Pricing in Brazil

Hourly Prices – last 6 months

Source: CCEE web site (https://www.ccee.org.br/precos/painel-preços)

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

LACIAM, Jan31th , 2023

Main References for the Models

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

Computation of the Operation Policy by SDDP

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

A pesquisa que constrói o futuro

	Current Decision	Future Inflows	Outcome
722			
Decision 🥜	use Hydro Generation (lower costs)		
maker's dilemma			

A pesquisa que constrói o futuro

A pesquisa que constrói o futuro

	Current Decision	Future Inflows	Outcome
722		Low	Higher costs, rationing 🚷
Decision 🪄	use Hydro Generation (lower costs)		
maker's dilemma			

A pesquisa que constrói o futuro

A pesquisa que

constrói o futuro

A pesquisa que constrói o futuro

How to obtain the Operation Policy?

Theoretical Background

- 1962: Bellman 's (Stochastic) Dynamic Programming (SDP)
- 1969: Slyke & Wets L-shaped Method (2-stage problem) + Benders cuts
 - **1985:** Birge 's **Dual** Dynamic Programming (**DDP**) multistage problem
- 1991: Pereira 's Sampling-based DDP (SDDP Stochastic Dual Dynamic Programming)

The FCFs consist in Recourse Functions obtained as an output of Dynamic Programming-based optimization strategies

1962: Bellman's (Stochastic) Dynamic Programming (SDP)

PRINCETON LANDMARKS IN MATHEMATICS

Dynamic

Programming

Discretization of system states (storages at each stage)

Backward pass to build the FCFs for each stage

Allows any cost function/constraints (nonconvex problems)

Curse of dimensionality

A pesquisa que constrói o futuro

A pesquisa que

constrói o futuro

A pesquisa que

constrói o futuro

A pesquisa que constrói o futuro

A pesquisa que

constrói o futuro

A pesquisa que constrói o futuro

A pesquisa que

constrói o futuro

A pesquisa que constrói o futuro

A pesquisa que

constrói o futuro

A pesquisa que

constrói o futuro

Lower Piecewise Linear Approximation (PWL) requires convexity of the FCF Second-stage subproblems need to be convex

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

A pesquisa que

constrói o futuro

1985: Dual Dynamic Programming (DDP)

t = 3

 V^2

FCF³

t = 4

 V^3

FCF 4

t = 1

FCF¹

t = 2

 V^{1}

FCF²

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

> M. V. F. PEREIRA AND L. M. V. G. PINTO CEPEL, Centro de Pesquisas de Energia Elétrica, Rio de Janeiro, Brazil

Optimal value

t = 5 (=T)

 V^4

1985: Dual Dynamic Programming (DDP)

Operations Research Vol. 33, No. 5, September–October 1985

> Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> > JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

> M. V. F. PEREIRA AND L. M. V. G. PINTO CEPEL, Centro de Pesquisas de Ehergia Elétrica, Rio de Janeiro, Brazil

Optimal value

1985: Dual Dynamic Programming (DDP)

1st iteration - Forward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

> M. V. F. PEREIRA AND L. M. V. G. PINTO CEPEL, Centro de Pesquisas de Energia Elétrica, Rio de Janeiro, Brazil

Lower Bound

1st iteration - Forward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

1st iteration - Forward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

A pesquisa que constrói o futuro

1st iteration - Forward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

1st iteration - Forward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

> M. V. F. PEREIRA AND L. M. V. G. PINTO CEPEL, Centro de Pesquisas de Energia Elétrica, Rio de Janeiro, Brazil

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

1st iteration - Backward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

A pesquisa que constrói o futuro

1st iteration - Backward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

A pesquisa que constrói o futuro

1st iteration - Backward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

1st iteration - Backward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

> M. V. F. PEREIRA AND L. M. V. G. PINTO CEPEL, Centro de Pesquisas de Energia Elétrica, Rio de Janeiro, Brazil

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

1st iteration - Backward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

> M. V. F. PEREIRA AND L. M. V. G. PINTO CEPEL, Centro de Pesquisas de Energia Elétrica, Rio de Janeiro, Brazil

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

1st iteration - Backward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

1st iteration - Backward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

1st iteration - Backward Pass

Operations Research Vol. 33, No. 5, September–October 1985

> Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> > JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

2nd iteration - Forward Pass

Lower Bound Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

> M. V. F. PEREIRA AND L. M. V. G. PINTO CEPEL, Centro de Pesquisas de Energia Elétrica, Rio de Janeiro, Brazil

Bound

A pesquisa que constrói o futuro

2nd iteration - Forward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

2nd iteration - Forward Pass

t = 1

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for **Multistage Stochastic Linear Programs**

JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

2nd iteration - Forward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

A pesquisa que constrói o futuro

2nd iteration - Forward Pass

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Operations Research Vol. 33, No. 5, September-October 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

Decomposition and Partitioning Methods for

Multistage Stochastic Linear Programs JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

2nd iteration - Forward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

2nd iteration - Backward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

2nd iteration - Backward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

2nd iteration - Backward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

Decomposition and Partitioning Methods for

Multistage Stochastic Linear Programs JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL 21, NO. 6. PAGES 779-792, JUNE 1985 Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach M. V. F. PEREIRA AND L. M. V. G. PINTO CEPFEL Centro de Pesquisas de Ehergia Elérrica. Reito de Janeiro, Brazil

Operations Research Vol. 33, No. 5, September-October 1985

2nd iteration - Backward Pass

LACIAM, Jan31th , 2023

Decomposition and Partitioning Methods for

Multistage Stochastic Linear Programs JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

water Resources research, vol. 21, NO. 6, PAGES 779–792, JUNE 1985 Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

> M. V. F. PEREIRA AND L. M. V. G. PINTO CEPEL, Centro de Pesquisas de Ehergia Elétrica, Rio de Janeiro, Brazil

2nd iteration - Backward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

A pesquisa que constrói o futuro

2nd iteration - Backward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

2nd iteration - Backward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

2nd iteration - Backward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

3rd iteration - Forward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

A pesquisa que constrói o futuro

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

3rd iteration - Forward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

> M. V. F. PEREIRA AND L. M. V. G. PINTO CEPEL, Centro de Pesquisas de Energia Elétrica, Rio de Janeiro, Brazil

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

3rd iteration - Forward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

A pesquisa que constrói o futuro

Decomposition and Partitioning Methods for

Multistage Stochastic Linear Programs JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL 21, NO. 6. PAGES 779-792, JUNE 1985 Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach M. V. F. PEREIRA AND L. M. V. G. PINTO CEPFEL Centro de Pesquisas de Ehergia Elérrica. Reito de Janeiro, Brazil

Operations Research Vol. 33, No. 5, September-October 1985

3rd iteration - Forward Pass

3rd iteration - Forward Pass

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

Operations Research Vol. 33, No. 5, September-October 1985

Decomposition and Partitioning Methods for **Multistage Stochastic Linear Programs**

> JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan

WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach

> M. V. F. PEREIRA AND L. M. V. G. PINTO CEPEL, Centro de Pesquisas de Energia Elétrica. Rio de Janeiro, Brazi

Optimal value

- System states where to approximate the FCF are obtained iteratively
 - avoids the curse of dimensionality

- Lower PWL approximations requires convexity of the FCF
- > Only 1st stage subproblem can be non-convex

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

Operations Research Vol. 33, No. 5, September-October 1985 Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs JOHN R. BIRGE The University of Michigan, Ann Arbor, Michigan WATER RESOURCES RESEARCH, VOL. 21, NO. 6, PAGES 779-792, JUNE 1985 Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach M. V. F. PEREIRA AND L. M. V. G. PINTO CEPEL, Centro de Pesquisas de Energia Elétrica, Rio de Janeiro, Brazi System states are not discretized (avoids curse of dimensionality) Any scnenario generator can be used Complete scenario tree must be set En. ("curse of scenarity") > Same convexity requirements of the E L-shaped method

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach M. V. F. PEREIRA AND L. M. V. G. PINTO CEPEL, Centro de Pesquisas de Energia Elétrica, Rio de Janeiro, Brazi System states are not discretized (avoids curse of dimensionality) Any scnenario generator can be used Complete scenario tree must be set Er. ("curse of scenarity") Same convexity requirements of the L-shaped method Yields an optimal <u>solution</u> but not a policy for simulation purposes

Suitable for mid term planning
1991: Stochastic Dual Dynamic Programming (SDDP) Cepel

generate many

Build policy function

Cut sharing

Resampling

system states

approximations

- At each given state, all single stage scenarios are solved in backward passes
- Set of descendant nodes of of each stage have the same pdf (random variables + probabilities)
- Several paths are traversed in each iteration, with resampling of forward scenarios

Mathematical Programming 52 (1991) 359-375

Multi-stage stochastic optimization applied to energy planning M.V.F. Pereira and L.M.V.G. Pinto Electric Engineering Department, Catholic University of Rio de Janeiro, P.O. Box 38063, Gavea, 22452 Rio de Janeiro, RJ, Brazil

> Mathematical Programming 75 (1996) 241–256 Cut sharing for multistage stochastic linear programs with interstage dependency Gerd Infanger^{a,1,*}, David P. Morton^{b,2}

Operations Research Letters 36 (2008) 450–455 On the convergence of stochastic dual dynamic programming and related methods A.B. Philpott*, Z. Guan

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

Literature on SDDP (1/6)

> Variants in the **sampling** / **cut building procedures**

1999	2006	2014
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 102, No. 3, pp. 497-524, SEPTEMBER 1999	Algorithmic Operations Research Vol.1 (2006) 20–30	Journal of Applied Operational Research (2014) 6(1), 2–15
Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse ¹ Z. L. CHEN ² AND W. B. POWELL ³	The Abridged Nested Decomposition Method for Multistage Stochastic Linear Programs with Relatively Complete Recourse Christopher J. Donohue ^a John R. Birge ^b	ReSa: A method for solving multistage stochastic linear programs Magnus Hindsberger *

Parallelization strategies

2003	2013
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2003 721	4888 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 4, NOVEMBER 2013
Parallel Processing Applied to the Planning of Hydrothermal Systems	An Efficient Parallel Algorithm for Large Scale Hydrothermal System Operation Planning
Edson Luiz da Silva, Senior Member, IEEE, and Erlon Cristian Finardi	Roberto J. Pinto, CarmenL. T. Borges, Senior Member, IEEE, and Maria E. P. Maceira

		2021	
a	Electric Power Systems Research 191 (2021) 106907		Computational Management Science
	Contents lists available at ScienceDirect	ELECTRIC POWER SYSTEMS RESEARCH	https://doi.org/10.1007/s10287-021-00411-x
FLSEVIER	Electric Power Systems Research	¥	Parallel and distributed computing for
Asynchronous hydrothermal	parallel stochastic dual dynamic programming applied to generation planning		dynamic programming
Felipe D.R. Machado ^a , Andre Luiz Diniz ^a , Carmen L.T. Borges ^{*,b} , Lilian C. Brandão ^a			D. Avila ' 🕑 · A. Papavasiliou ' · N. Löhndorf ²

2021 stochastic dual

Literature on SDDP (2/6)

Convergence Analysis and Stopping Criteria

1996

STOPPING RULES FOR A CLASS OF SAMPLING-BASED STOCHASTIC PROGRAMMING ALGORITHMS

DAVID P. MORTON

The University of Texas at Austin, Austin, Texas (Received May 1994; revision received February 1996; accepted November 1996)

2008

2010

Operations Research Letters 36 (2008) 450-455

On the convergence of stochastic dual dynamic programming and related methods

A.B. Philpott*, Z. Guan

Department of Engineering Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand

On SDDP algorithm implementation – forward re-sampling

Murilo Pereira Soares and Joari Paulo da Costa

February 22, 2010

Resampling

Analysis of stochastic dual dynamic programming method Alexander Shapiro*

2011

2011

MERTION COMMANDS

2018

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 33, NO. 4, JULY 2018

A Convergence Criterion for Stochastic Dual Dynamic Programming: Application to the Long-Term Operation Planning Problem

Rafael Bruno S. Brandi, André Luís Marques Marcato⁹, *Senior Member, IEEE*, Bruno Henriques Dias⁹, *Senior Member, IEEE*, Tales Pulinho Ramos, and Ivo Chaves da Silva Junior

Energy Syst (2011) 2: 1-31 DOI 10.1007/s12667-011-0024-y

Sampling strategies and stopping criteria for stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling

Tito Homem-de-Mello · Vitor L. de Matos · Erlon C. Finardi

2012

XII SIMPÓSIO DE ESPECIALISTAS EM PLANEJAMENTO DA OPERAÇÃO E EXPANSÃO ELÉTRICA

XII SYMPOSIUM OF SPECIALISTS IN ELECTRIC OPERATIONAL AND EXPANSION PLANNING

Aplicação de Reamostragem de Cenários Hidrológicos na Definição da Estratégia de Operação Energética de Médio Prazo

D. D. J. PENNA¹, M. E. P. MACEIRA^{1,2}, J. M. DAMÁZIO^{1,2} e A. L. DINIZ^{1,2} ¹Centro de Pesquisas de Energia Elétrica ²Universidade Estadual do Rio de Janeiro Rio de Janeiro, Brasil

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

LACIAM, Jan31th , 2023

XII SEPOPE 20 a 23 de Maio 2012 May - 20th to 23rd - 2012 XII SYMPO

RIO DE JANEIRO (RJ) -BRASIL

Literature on SDDP (3/6)

Assessment of Policy Quality (lower/Upper bounds)

1	9	9	9

Operations Research Letters 24 (1999) 47-56

Monte Carlo bounding techniques for determining solution quality in stochastic programs

Wai-Kei Maka, David P. Mortonb, R. Kevin Woodc, *

Math. Program., Ser. B 108, 495-514 (2006)

Digital Object Identifier (DOI) 10.1007/s10107-006-0720-x

Güzin Bayraksan · David P. Morton

Assessing solution quality in stochastic programs

2006

Ann Oper Res

DOI 10.1007/s10479-016-2107-6

Assessing policy quality in a multistage stochastic program for long-term hydrothermal scheduling

Vitor L. de Matos¹ · David P. Morton² · Erlon C. Finardi³

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

2017

Literature on SDDP (4/6)

> Modeling of higher order time-dependencies on random variables

Modeling of higher order time-dependencies on decision variables

2012 - Anticipated Dispatch of thermal plants

July 21, 2012 11:11 9in x 6in Applications in Finance, Energy, Planning and Logistics b1392-ch16 Chapter 16 Multi-Lag Benders Decomposition for Power Generation Planning with Nonanticipativity Constraints on the Dispatch of LNG Thermal Plants Andre L. Diniz* and Maria E. P. Maceira[†]

2012 - Time-Window emission constraints

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 27, NO. 1, FEBRUARY 2012

Stochastic Hydro-Thermal Scheduling Under CO₂ Emissions Constraints

Steffen Rebennack, Member, IEEE, Bruno Flach, Member, IEEE, Mario V. F. Pereira, Fellow, IEEE, and Panos M. Pardalos

Literature on SDDP (5/6)

2013

Risk Averse Approaches

CVaR

2

	Contents lists available at ScienceDirect
	European Journal of Operational Research
Selfer	

European Journal of Operational Research 209 (2011) 63-7.

journal homepage: www.elsevier.com/locate/ejor

Analysis of stochastic dual dynamic programming method

Alexander Shapiro*

2015

Electrical Power and Energy Systems 72 (2015) 126–135 Contents lists available at ScienceDirect Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Application of CVaR risk aversion approach in the expansion and operation planning and for setting the spot price in the Brazilian hydrothermal interconnected system

M.E.P. Maceira ^{a,b,*}, L.G.B. Marzano^a, D.D.J. Penna^a, A.L. Diniz^{a,b}, T.C. Justino^a

2011

Contents lists available at SciVerse ScienceDirect European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

A.B. Philpott^{a,*}, V.L. de Matos^b

LSEVIEF

Math. Program., Ser. A (2015) 152:275–300 DOI 10.1007/s10107-014-0787-8

FULL LENGTH PAPER

Evaluating policies in risk-averse multi-stage

stochastic programming

Václav Kozmík · David P. Morton

2011

2015

Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Risk neutral and risk averse Stochastic Dual Dynamic Programming method Alexander Shapiro^{a,*}, Wajdi Tekaya^a, Joari Paulo da Costa^b, Murilo Pereira Soares^b

Risk Averse Surface (rule curves)

2017

Avaliação do Uso de Restrições Probabilisticas para a Superfície de Aversão a Risco no Problema c Planeiamento de Médio Prazo da Operacão Hidrotérmica

L.F. RODRIGUES(*)^{1,3},A.L. DINIZ^{1,2}, R.B. PRADA³

¹CEPEL – Centro de Pesquisa de Energia Elétrica ²UERJ -Universidade do Estado do Rio de Janeiro ³PUC-RIO -Pontificia Universidade Catôlica do Rio de Janeiro-Departamento de Engenharia Elétrica

2020

Annals of Operations Research S.I. : STOCHASTIC OPTIMIZATION:THEORY&APPLICATIONS IN MEMORY OF M.BERTOCCHI

A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning

Andre Luiz Diniz^{1,2} • Maria Elvira P. Maceira^{1,2} • Cesar Luis V. Vasconcellos¹ • Debora Dias J. Penna¹

Robust Optimization (demand uncertainty)

2012

Operations Research 61(6):1435-1449.

Worst-Case-Expectation Approach to Optimization Under Uncertainty

Alexander Shapiro, Wajdi Tekaya, Murilo Pereira Soares, Joari Paulo da Costa

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

Literature on SDDP (6/6)

Combination of decomposition approaches to model different types of uncertainties

1999 - SDP / SDDP

A. Gjelsvik, M. M. Belsnes, and A. Haugstad, "An algorithm for stochastic medium-term hydrothermal scheduling under spot price uncertainty," in Proc. 13th Power Syst. Comput. Conf., Trondheim, Norway, 1999, pp. 1079-1085.

2016 – Sampling X scenario tree

2021

SDDP with Reinforcement Learning / AI

2021 Batch Learning in Stochastic Dual Dynamic Programming Daniel Ávila*, Anthony Papavasiliou Center of Operations Research and Econometrics, Université Catholigue de Louvain, 1348 Louvain-La-Neuve, Belgium Nils Löhndorf Luxembourg Centre for Logistics and Supply Chain Management, University of Luxembourg, 1511 Luxembourg, Luxembourg Preprint submitted to European Journal of Operational Research May 17, 2021

NEURAL STOCHASTIC DUAL DYNAMIC PROGRAMMING

A PREPRINT

Hanjun Dai*, Yuan Xue; Zia Syed, Dale Schuurmans, Bo Dai Google

{hadai, yuanxue, zsyed, schuurmans, bodai}@google.com

SDDP with Nonconvex Constraints (1/3)

Convex relaxation in the backward pass (Loose cuts)

- Nonconvex model of the Hydro production function with McCormick envelopes
- solve MILP in forward passes and Lagrangian relaxation of subproblems in backward passes, yileding tighter cuts
- Strategic Bidding Problem
- > DP equations are considered in the LR procedure
- Step Function model for the FCF
- > MILP subproblems are solved in forward/backard passes

2016 Earry Procedia 00 (2016) 000-000 5th International Workshop on Hydro Scheduling in Competitive Electricity Markets Optimizing hydrothermal scheduling with non-convex irrigation constraints: Case on the Chilean electricity system Eduardo Pereira-Bonvallet^{a,e}, Sebastian Püschel-Løvengreen^a, Marcelo Matus^a, Rodrigo Moreno^{a,b} ^aEnergy Centre, Electrical Engineering Department, University of Chile, 40: Tupper 2007, Santago, Chile.

stituto de Investigación Tecnológica, ICAI, Universidad Pontificia Comillas, Alberto Aguilera 23, 28015 Madrid, Spain

2016

European Journal of Operational Research 00 (2016) 1-30

Dynamic Convexification within Nested Benders Decomposition using Lagrangian Relaxation: An Application to the Strategic Bidding Problem

Gregory Steeger, Steffen Rebennack^a

Colorado School of Mines, Division of Economics and Business, Golden, CO 8040

2020

MIDAS: A mixed integer dynamic approximation scheme

A. B. Philpott 🗁, F. Wahid & J. F. Bonnans

Mathematical Programming 181, 19–50 (2020)

SDDP with Nonconvex Constraints (2/3)

Stochastic dual dynamic integer programming

Jikai Zou¹ · Shabbir Ahmed¹ · Xu Andy Sun¹

2019

SDDiP – Stochastic Dual Dynamic Integer Programming

- > Modeling on nonconvexities in an explicit way with a MILP problem
- > Binary expansion to derive 0-1 state variables
- > 3 types of cuts with increasing degree of exacteness:
 - Traditional Benders cuts
 - Lagrangian cuts
 - Strenghtened Benders cuts

Applications so far (small systems)

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 10, NO. 1, JANUARY 2019

Nonconvex Medium-Term Hydropower Scheduling by Stochastic Dual Dynamic Integer Programming Martin N. Hjelmeland[®], *Student Member, IEEE*, Jikai Zou, Arild Helseth[®], *Member, IEEE*, and Shabbir Ahmed, *Senior Member, IEEE*

2019

IEEE TRANSACTIONS ON POWER SYSTEMS, SEPTEMBER 20

Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming

Jikai Zou, Shabbir Ahmed, Senior Member, and Andy Sun, Senior Member

2019

2020

Nonconvex Environmental Constraints in Hydropower Scheduling Arild Helseth, Birger Mo, Hans Olaf Hågenvik SINTEF Energy Research Trondheim, Norway arild helseth@sintef no

yields convex FCFs in the {0,1}² space

Math. Program., Ser. A

FULL LENGTH PAPEI

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

SDDP with Nonconvex Constraints (3/3)

Stochastic Lipschitz Dynamic Programming

If the FCFs are known to be Lipschitz-continuous, build lower approximations by Lipschitz continuous cuts Stochastic Lipschitz dynamic programming

Shabbir Ahmed, Filipe Goulart Cabral & Bernardo Freitas Paulo da Costa 🖂

Mathematical Programming 191, 755–793 (2022)

When the Lipschitz continuity hipothesis may not hold, applies a Lipschitz continuous regularized FCF Zhang, Shixuan and Sun, Xu A. 2022. "Stochastic dual dynamic programming for multistage stochastic mixed-integer nonlinear optimization."

https://doi.org/10.1007/s10107-022-01875-8 Springer Berlin Heidelberg

OPERATION POLICY BY SDDP FOR MID/LONG TERM PLANNING IN BRAZIL

Time dependency on random variables (Par(P)-A)

A pesquisa que

constrói o futuro

Time-dependency on decision variables (LNG plants, rule curves)

Forward resampling

Accelerating techniques (cut selection, warm starts)

Parallel processing

Stopping criteria: lower bound stability

Assessment of solution quality with 2,000 scenarios

Nonlinear/Nonconvex constraints in the NEWAVE model

Previous Assessments

- Performs na assessment of nonconvex terms related to the modeling of energy inflows
- Proposes linear approximations instead of quadratic functions in the modeling of nonlinear terms related to state variables (in the modeling of equivalent reservoirs)
- Application of dynamic piecewise linear models for convex thermal Generation costs and convexified non-conconcave Hydro production function

2012

1st case: explicit nonlinear functions of decisions variables *x*

- Since the problems should be convex, we must have:
 - ✓ equations ?

1st case: explicit nonlinear functions of decisions variables x

- Since the problems should be convex, we must have:
 - ✓ equations => must have a linear formulation

1st case: explicit nonlinear functions of decisions variables x

Since the problems should be convex, we must have:

✓ equations => must have a linear formulation

✓ inequalities ?

1st case: explicit nonlinear functions of decisions variables x

Since the problems should be convex, we must have:

- ✓ equations => must have a linear formulation
- ✓ inequalities => must satisfy:

Cepel A pesquisa que constrói o futu

1st case: explicit nonlinear function of decisions variables x

> What if we have nonlinear (concave/convex) equations?

1st case: explicit nonlinear function of decisions variables x

- > What if we have nonlinear (concave/convex) equations?
 - ✓ 1st step: expand the feasible region by transforming the equation into an inequality relation

1st case: explicit nonlinear function of decisions variables x

> What if we have nonlinear (concave/convex) equations?

- \checkmark 1st step: expand the feasible region by transforming the equation into an inequality relation
- ✓ 2nd step: check whether the optimal solution will tend to lie in the boundary of the augmented feasible region

(example for cost minimization problems)

Cepel A pesquisa constrói o fu

1st case: explicit nonlinear function of decisions variables x

> What if we have **non concave/non convex inequalities**?

1st case: explicit nonlinear function of decisions variables x

- > What if we have **non concave/non convex inequalities**?
 - \checkmark 1st step: check the conditions:

Cepel A pesquisa c constrói o fu

1st case: explicit nonlinear function of decisions variables x

- > What if we have **non concave/non convex inequalities**?
 - \checkmark 1st step: check the conditions:
 - ✓ 2nd step: apply a convexification procedure to yield outer concave/convex approximations

1st case: explicit nonlinear function of decisions variables x

- > What if we have **non concave/non convex inequalities**?
 - \checkmark 1st step: check the conditions:
 - ✓ 2nd step: apply a convexification procedure to yield outer concave/convex approximations
 - ✓ 3rd step: apply a regression coefficient to decrease errors between both functions

 $f \ge g(x)$, with g nearly convex

A pesquisa que constrói o futu

1st case: explicit nonlinear function of decisions variables x

> What if we have **non concave/non convex equations**?

1st case: explicit nonlinear function of decisions variables x

> What if we have **non concave/non convex equations**?

Ist step: check whether the optimal solution will tend to lie in the boundary of the (to be augmented) feasible region

1st case: explicit nonlinear function of decisions variables x

> What if we have **non concave/non convex equations**?

- Ist step: check whether the optimal solution will tend to lie in the boundary of the (to be augmented) feasible region
- > 2nd step: apply the convexification/regression procedure previously described

2nd case: nonlinear function of state variables of a given subproblem

$$Ax = b - g(\hat{x}), \text{ with}$$
$$g(\hat{x}) \leq a\hat{x}^{2} + b\hat{x} + c,$$
$$\mathbf{1^{st situation:}}$$

2nd case: nonlinear function of state variables of a given subproblem

$$Ax = b - g(\hat{x}), \text{ with}$$

$$g(\hat{x}) \leq x\hat{x}^{2} + b\hat{x} + c, \quad x' = g(\hat{x})$$

$$f^{\text{st} \text{ situation:}}$$

$$Ax + x' = b$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad x' = g(\hat{x})$$

$$f^{\text{st} \text{ condition:}}$$

$$g(\hat{x}) \text{ must be concave (a<0)}$$

$$x' = g(\hat{x})$$

$$f^{\text{st} \text{ condition:}}$$

$$g(\hat{x}) = g(\hat{x})$$

2nd case: nonlinear function of state variables of a given subproblem

$$Ax = b - g(\hat{x}), \text{ with}$$

$$g(\hat{x}) \leq x\hat{x}^{2} + b\hat{x} + c, \quad x' = g(\hat{x})$$

$$x' = g(\hat{x})$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c, \quad \leftarrow \lambda^{*}$$

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

objective function inside the feasible region must hold

Cepe

2nd case: nonlinear function of state variables of a given subproblem

$$Ax = b - g(\hat{x}), \text{ with}$$
$$g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$
$$a^{\text{nd}} \text{ situation:}$$

2nd case: nonlinear function of state variables of a given subproblem

$$Ax = b - g(\hat{x}), \text{ with}$$

$$g(\hat{x}) = a\hat{x}^{2} + b\hat{x} + c, \quad x' = g(\hat{x})$$

$$x' = g(\hat{x})$$

$$x' = a\hat{x}^{2} + b\hat{x} + c, \quad x' = g(\hat{x})$$

$$x' = a\hat{x}^{2} + b\hat{x} + c, \quad x' = g(\hat{x})$$

2nd case: nonlinear function of state variables of a given subproblem

x

$$Ax = b - g(\hat{x}), \text{ with}$$

$$g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c, \quad x' = g(\hat{x})$$

$$ax' = g(\hat{x})$$

$$x' = a\hat{x}^2 + b\hat{x} + c, \quad x' = g(\hat{x})$$

$$x' = a\hat{x}^2 + b\hat{x} + c, \quad x' = g(\hat{x})$$
In order to augment the feasible region, the same requirement regarding the "direction" of the objective function into the feasible region must hold

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

x

2nd case: nonlinear function of state variables of a given subproblem

x

$$Ax = b - g(\hat{x}), \text{ with}$$

$$g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c, \quad x' = g(\hat{x})$$

$$ax + x' = b$$

$$x' = a\hat{x}^2 + b\hat{x} + c,$$

$$f(x) = a\hat{x$$

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

Ŷ

2nd case: nonlinear function of state variables of a given subproblem

$$Ax = b - g(\hat{x}), \text{ with}$$

$$g(\hat{x}) \leq x\hat{x}^{2} + b\hat{x} + c, \quad x' = g(\hat{x})$$

$$ax + x' = b$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c,$$

$$x' = g(\hat{x})$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c,$$

$$x' \leq a\hat{x}^{2} - b\hat{x} + c,$$

$$f(x) = b$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c,$$

$$f(x) = b$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c,$$

$$f(x) = b$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c,$$

$$f(x) = b$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c,$$

$$f(x) = b$$

$$x' \leq a\hat{x}^{2} + b\hat{x} + c,$$

$$f(x) = b$$

$$f($$

x

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

x

2nd case: nonlinear function of state variables of a given subproblem

$$Ax = b - g(\hat{x}), \text{ with}$$

$$g(\hat{x}) \ge a\hat{x}^2 + b\hat{x} + c, \quad x' = g(\hat{x})$$
2nd situation:

In order to augment the feasible region, the same requirement regarding the "direction" of the objective function into the feasible region must hold

$$Ax + x' = b$$

$$x' \ge a\hat{x}^2 + b\hat{x} + c, \quad x' = g(\hat{x})$$

$$x' = g(\hat{x}) - \text{ convex case}$$

х

2nd case: nonlinear function of state variables of a given subproblem

$$Ax = b - g(\hat{x}), \text{ with}$$

$$g(\hat{x}) \ge a\hat{x}^2 + b\hat{x} + c, \quad x' = g(\hat{x})$$

$$2^{nd} \text{ situation:}$$
In order to augment the feasible region, the same requirement regarding the "direction" of the objective function into the feasible region must hold
$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$x' = g(\hat{x}) = a\hat{x}^2 + b\hat{x} + c,$$

$$y' = a\hat{x}^2 + b\hat{x} + c,$$

Convexification procedures may be necessary
Nonlinear expressions for application of nonlinear constraints

Evaporation as a function of storage

Water intakes as a function of storage

Minimum outflow as a function of storage

A pesquisa que

constrói o futuro

Cepel

Water intakes as a function of storage

Minimum outflow as a function of storage

Minimum outflow as a function of storage

Water intakes as a function of storage

Water intakes as a function of storage

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

A pesquisa que

constrói o futuro

Cepel

Minimum outflow as a function of storage

Minimum outflow as a function of storage

Water intakes as a function of storage

A pesquisa que

constrói o futuro

Cepel

Water intakes as a function of storage $DESVC(EA_t)$ a = 0.260846E-09 b = -0.19384E-03 c = -0.38308E+03 EA_t Minimum outflow as a function of storage a = -0.789412E-08 b = 0.534699E-02c = 0.629055E+04

A pesquisa que

constrói o futuro

Cepel

Convergence check: deterministic cases

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

Linear (affine) approximation should be employed only if, after having checked all these conditions, one of them fail

Modelling of nonlinear/nonconvex aspects in SDDP algorithms: experience in the official models applied to the energy planning of the large-scale Brazilian system

A Survey on SDDP algorithms

STOCHASTIC DUAL DYNAMIC PROGRAMMING AND ITS VARIANTS

CHRISTIAN FÜLLNER* AND STEFFEN REBENNACK*

Abstract. We provide a tutorial-type review on stochastic dual dynamic programming (SDDP), as one of the state-of-the-art solution methods for multistage stochastic programs. Since introduced about 30 years ago for solving large-scale multistage stochastic linear programming problems in a hydrothermal context, SDDP has been applied to practical problems from several fields and is enriched by various improvements and enhancements to broader problem classes. We begin with a detailed introduction to SDDP, with special focus on its motivation and required assumptions. Then, we present and discuss in depth the existing enhancements as well as current research trends, allowing for an alleviation of those assumptions.

https://optimization-online.org/2021/01/8217/

