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The Turing instability

After more than 50 years, the mechanism proposed by Alan
Turing for the spontaneous generation of spatial patterns is still
paradigmatic.

Turing’s reaction-diffusion system:

∂u
∂t

= D∇2u + F (u) in Ω,

n̂ · ∇u = 0 on ∂Ω.

u = (u, v)T are concentrations of chemicals that Turing
called, generically, morphogens.
D is the diagonal matrix of diffusion coefficients Du and Dv .
F = (f ,g)T ; f (u, v), g (u, v) are non-linear functions that
determine the kinetics of the chemical reaction.
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The Turing instability

The Turing instability

A reaction-diffusion systems exhibits a diffusion-driven
instability, also called Turing instability, if the homogeneous
steady-state is stable to small perturbations in the absence of
diffusion, but unstable to small spatial perturbations when
diffusion is present.

A.M. Turing, “The chemical basis of morphogenesis “ , Philos. Trans. R. Soc. London B 237 (1952) 37.
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Linear analysis

If u0 = (u0, v0) is an steady state, i.e., F (u0) = 0, we consider
u = u0 + v.

Linearizing about u0:
∂v
∂t

= Jv, (1)

where J is the Jacobian associated with the reaction kinetics F,
evaluated at u0.

The condition for stability in the absence of diffusion are:

Tr (J) < 0, Det (J) > 0.
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Linear analysis

The perturbation v is governed by the linear problem:

∂v
∂t

= D∇2v + Jv.

Consider the spectral problem:

∇2Φ = −ρΦ, in Ω,

Φ = eik·x, ρ = k2 = ∥k∥2.

Therefore it seems reasonable to propose

v(x, t) =
∞∑

k=0

Ck (t)eik·x,

so that the evolution of the k -th Turing mode coefficient is

dCk

dt
=

(
−k2D+ J

)
Ck , k = 0,1,2, . . . .
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Linear analysis

Assuming Ck (t) = eλk tck , we get(
λk I+ k2D− J

)
ck = 0.

Nontrival solutions are obtained if

λ2
k − tr

(
−k2D+ J

)
λk + det

(
−k2D+ J

)
= 0.

Re(λk ) > 0 is obtained if an only if det(−k2D+ J) < 0.

It is assumed that D = diag[d ,1], were d = Du/Dv . In this case

dc =
(J11J22 − 2J12J21)− 2

√
−J12J21det(J)

J2
22

, k2
c =

J11 + dcJ22

2dc
.
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Linear analysis

J.D. Murray, Mathematical Biology II.
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Linear analysis

Linear stability is useful to understand the basics of pattern
formation:

Diffusion is the key mechanism.
Parameter values for the formation of the pattern can be
determined.
Patterns have a fixed wave-length 1/kc .

But, once the instability criterion is established, the determined
dominant mode grows exponentially and is not valid at all times.

The long-time evolution of the pattern, and the determination of
the type of pattern, should be studied by means of a nonlinear
analysis.
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Weakly nonlinear analysis

For the nonlinear analysis it is taken into account that in a
Turing bifurcation the linear instability is preceded by
Re(λk ) = 0. Then, close to the bifurcation point the pattern
evolves on a slow temporal scale as eλk t , where λk ≈ 0.

Therefore, the most useful approach is the multiple scales
perturbation method, which has two key tricks:

Introduces scaled space and time coordinates to capture
the slow modulation of the pattern, treating these as
separate variables in addition to the original variables that
must be retained to describe the pattern state itself.
Uses what are known as solvability conditions in the formal
derivation.
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Weakly nonlinear analysis

Close to the bifurcation point we assume

u = u0 + û.

Taylor series expansion of F(u), around u0, produces

F(u) = Jû +Q(û, û) + C(û, û, û) + · · · ,

where J, Q and C are, respectively, the lineal quadratic and
cubic terms evaluated at u0.
A slow time scale is introduced:

T = ŵ t , ŵ = ϵw1 + ϵ2w3 + ϵ3w2 · · · ,
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Weakly nonlinear analysis

Therefore the perturbation is governed by

ŵ
∂û
∂T

= D∇2û + Jû +Q(û, û) + C(û, û, û) + · · · .

Now, perturbations are assumed to be:

u = u0 + û =u0 +
(
ϵu1 + ϵ2u2 + ϵ3u3 + · · ·

)
p = pc + p̂ =pc +

(
ϵp1 + ϵ2p2 + ϵ3p3 + · · ·

)
,

where p is a chosen parameter of the model.
These perturbations are replaced in the above equation to
get, to the various orders of ϵ, a hierarchy of linear
differential equations:
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Weakly nonlinear analysis

O(ϵ) : Lu1 = 0,

O(ϵ2) : Lu2 = Q(u1,u1) + p1Jc
pu1 − w1

∂u1

∂T
,

O(ϵ3) : Lu3 = Q(u1,u2) + C(u1,u1,u1) + p2Jc
pu1 + p1Jc

pu2+

p1Qc(u1,u1)− w1
∂u2

∂T
− w2

∂u1

∂T
,

where L = (−J− D∇2).

The analysis, which needs the O(ϵ3), require the solutions of
these linear system of equations. The algebra is horrendous
but necessary. J.D. Murray, Mathematical Biology II.
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Weakly nonlinear analysis

The solutions of O(ϵ) is proposed as linear combination of
two spatial modes

u1 = V(1)a(T )eikc ·x + V̄(1)ā(T )e−ikc ·x,

and solving the equation of O(ϵ), V(1) and V̄(1) are
determined.
The equation of O(ϵ2) is solved to obtain u2, after applying
the solvability condition (Fredholm alternative) to supress
secular terms.
With u1 and u2 at hand, the solvability condition is applied
to the equation of O(ϵ3) to finally obtain the equations of
the amplitude functions a(T ) and ā(T ):
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Weakly nonlinear analysis

The Stuart-Landau equations:

d |a|2

dT
= α|a|4 + β|a|2|ā|2 + θ|a|2,

d |ā|2

dT
= α|ā|4 + β|a|2|ā|2 + θ|ā|2.

The explicit expressions of the coefficients α, β, and θ, result
from this nonlinear analysis.

We don’t really need to solve these equations.
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Weakly nonlinear analysis

A linear stability analysis of the Stuart-Landau equation, which
has four equilibrium points, allows the identification of the type
of spatial pattern to be formed:

Steady state Conditions for linear stability pattern
|a|2 = |ā|2 = 0 θ < 0 None

|a|2 = 0, |ā|2 = −θ
α θ > 0 and β

α > 1 Stripes
|a|2 = −θ

α , |ā|2 = 0 θ > 0 and β
α > 1 Stripes

|a|2 = |ā|2 = θ
α+β θ > 0 and α < −|β| < 0 Spots
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Weakly nonlinear analysis
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Weakly nonlinear analysis

After 1952

The Turing Digital Archive: https://turingarchive.kings.cam.ac.uk.

https://turingarchive.kings.cam.ac.uk
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Weakly nonlinear analysis

Turing’s work on morphogenesis remained largely unknown
until more that 25 years when the existence of morphogen
gradients was pointed out: C. Nüsslein-Volhard, E. Wieschaus, Nature
287 (1980) 795-801.

It was found that the Turing instability occurs in a great variety
of other systems as well:

Taylor vortex flow:
E. Koschmeider, Order and fluctuation in in equilibrium and
nonequilibrium statistical mechanics Wiley (1981).

Dynamic solidification:
J. Langer, Rev. Mod. Phys. 52 (1980) 1-28.

Laser Physics:
A. Newell, J. Maloney, Nonlinear optics, Addison-Wesley (1992).
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Most popular kinetics

Chemical kinetics Name Application
F (u, v) = µu (1 − u/K ) Fisher Bacteria population
F (u, v) = au − buv Lotka-Volterra Prey-predator dynamics
G (u, v) = −cu + duv
F (u, v) = ρu − µuu + ρu2/v Gierer-Meinhardt General
G (u, v) = ρv − µv v + ρu2

F (u, v) = f (1 − u)− uv2 Gray-Scott Cell glycolysis
G (u, v) = bu − u2v
F (u, v ,w) = [ε (qv − uv + u (1 − u))]−1 Oregonator Belusov-Zhabotinsky
G (u, v ,w) = [ε′ (−qv − uv + fw)]−1

H (u, v ,w) = u − v
F (u, v) = a − (b + 1)u + u2v Brusselator Auto-catalytic reactions
G (u, v) = bu − u2v
F (u, v) = a − u − 4uv/

(
1 + u2) Lengyel-Epstein Chlorine-iodide-malonic

G (u, v) = δ
(
u − uv/

(
1 + u2)) acid reaction

F (u, v) = γ
(
a − u + u2v

)
Shnakenberg Oregonator simplified

G (u, v) = γ
(
b − u2v

)
F (u, v) = −v + u + u3 Fitzhugh-Nagumo Pulse propagation in
G (u, v) = ε (u − αv − β) nerve membrane
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The BVAM model

The BVAM model was proposed in 1999 as a general
purposes, yet simple, model, which presents a rich bifurcation
structure and constitutes a versatile system for modeling
biological phenomena.

The BVAM model

∂u
∂t

= D ∇2u + η
(

u + av − cuv − uv2
)
,

∂v
∂t

= ∇2u + η
(

bv + hu + cuv + uv2
)
.

C. Varea, R.A. Barrio, J.L. Aragón, P.K. Maini, Bull. Math. Biol. 61 (1999) 483.
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Coupling reaction-diffusion equations

One way to generate a larger variety of patterns is by coupling
two reaction-diffusion systems:

∂u
∂t

= Du∇2u + F (u) +Ku (u,v) ,

∂v
∂t

= Dv∇2v + G (v) +Kv (u,v) ,

where Ku and Kv are coupling functions:

Ku =

(
p (u1 − v1)
q (u2 − v2)

)
, Kv =

(
p (v1 − u1)
q (v2 − u2)

)
.
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Hypostomus plecostomus

Thirteen−lined
Ground Squirrel

Pomacanthus maculatus

Pomacanthus  imperator

Aragón, Varea & Barrio, FORMA 13 (1998) 213.
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Non-trivial domains

Varea, Aragón, Barrio Phys. Rev. E 60 (1999) 4588.
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Modulation instability

The BVAM model can be transformed onto one equation that
resembles the one used to study localized structures in
nonlinear optics.

Wooley, Baker, Maini, Aragón, Barrio, Phys. Rev. E 82 (2010) 051929.
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Aragón, Barrio, Wooley, Baker, Maini, Phys. Rev. E 86 (2012) 026201.
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Aragón, Barrio, Wooley, Baker, Maini, Phys. Rev. E 86 (2012) 026201.
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Phyllotaxis

The arrangement of lateral organs (such as leaves, scales,
florets) on a plant surface.
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The Turing Digital Archive: https://turingarchive.kings.cam.ac.uk.

https://turingarchive.kings.cam.ac.uk
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Phyllotaxis
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Rueda, Romero, Aragón, Barrio, Plos One 13 (2018) e0201746.
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Space-dependent diffusion coefficient

The general problem:

∂u
∂t

= D∇ · (D(x)∇u) + ηF(u) in Ω,

n · (D(x)∇u) = 0 on ∂Ω,

where D = diag[d ,1] already considered, D(x) is a function that
describes the spatial variation of the diffusion rate, and η is a
non-dimensional coefficient related to the size of the space
domain
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Space-dependent diffusion coefficient (1D)

Maini, Benson, Sherrat, IMA J. Math. Appl. Med. Biol. 9 (1992) 197.
Wei, Winter, J. Nonlinear Sci. 19 (2009) 301.

D(x) =
{

D+ 0 ≤ x < ξ
D− ξ < x ≤ 1

Benson, Maini, Sherrat, J. Math. Biol. 37 (1998) 381.

D(x) = D + ηx2

Chacón-Acosta, Núñez-López, Pineda J. Chem. Phys. 152 (2020)
024101.

∂p
∂t

= D0
∂

∂x

[
w(x)

∂

∂x

(
p

w(x)

)]
+ F .
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The general problem

The general problem:

∂u
∂t

= D∇ · (D(x)∇u) + ηF(u) in Ω,

n · (D(x)∇u) = 0 on ∂Ω,

where D = diag[d ,1] already considered, D(x) is a function that
describes the spatial variation of the diffusion rate, and η is a
non-dimensional coefficient related to the size of the space
domain
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Linear analysis

As before, the perturbation v, around the steady state u0, is
governed by the linear problem:

∂v
∂t

= D∇ · (D(x)∇v) + ηJv, in Ω

n · (D(x)∇v) = 0, on ∂Ω.

Consider the spectral problem:

∇ · (D(x)∇Φ) = −ρ Φ, in Ω

n · (D(x)∇Φ) = 0, on ∂Ω.

When solutions exist, there is an infinite but countable set of
real eigenvalues ρi , and the corresponding set of
eigenfunctions Φ0,Φ1, . . ., form a complete basis functions on Ω
satisfying the given boundary conditions.
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Linear analysis

Therefore it seems reasonable to propose

v(x, t) =
∞∑

n=0

Cn(t)Φn(x),

By following the procedure already described, we obtain the
dispersion relation:

λ2
k − tr (−ρkD+ ηJ)λk + det (−ρkD+ ηJ) = 0,

from which we obtain:

dc =
(J11J22 − 2J12J21)− 2

√
−J12J21det(J)

J2
22

, ρc = η
J11 + dcJ22

2dc
.

The linear problem is the same but ρk must be known.
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Linear analysis

1D

Consider the 1D BVAM model in the space domain Ω = [−1,1]:

∂u
∂t

= d
∂

∂x

(
D(x)

∂u
∂x

)
+ η

(
u + av − cuv − uv2

)
∂v
∂t

=
∂

∂x

(
D(x)

∂v
∂x

)
+ η

(
bv + hu + cuv + uv2

)
D(x)

∂u
∂x

= 0, D(x)
∂v
∂x

= 0 at x = −1,1.

This system has three steady states, including (u0, v0) = (0,0).
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Linear analysis

Associated (Sturm-Liouville) spectral problem:

d
dx

(
D(x)

dΦ
dx

)
= −ρΦ, in Ω = [−1,1]

D(x)
dΦ
dx

= 0, at x = −1,1.

D(x) = 1 in this case Φk = cos(kx), ρk = k2 = (nπ)2, and the
linear analysis yields:

dc =
1

2
√

ah(ah − b)− 2ah + b
,

k2
c =η2

(√
ah(ah − b)− ah + b

)
.
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Linear analysis

D(x) = 1 − x2 in this case Φk = Pk (x), the Legendre
polynomials of degree k ∈ N, ρk = k(k + 1), and the linear
analysis yields the same dc but:

kc(kc + 1) = η2
(√

ah(ah − b)− ah + b
)
.

a = 3, b = −2, h = −1, c = 0.95, dc = 0.133975, η = 10.9808,

kc = 18.1501 (homogeneous), kc = 18 (Legendre).
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Linear analysis

2D

In the space domain Ω = [−1,1]× [−1,1]

∂u
∂t

= d ∇ · (D11(x)∇u) + η
(

u + av − cuv − uv2
)
,

∂v
∂t

= ∇ · (D22(x)∇v) + η
(

bv + hu + cuv + uv2
)
,

D11(x)∇u · n = 0, and D22(x)∇v · n = 0.

For D(x) it is proposed:

D(x , y) =


(

1 − x2 0
0 1 − y2

)
0

0
(

1 − x2 0
0 1 − y2

)
 .



Introduction Some generalizations and applications Eigenfunctions of the Legendre operator Conclusions

Linear analysis

With this, the spectral problem becomes:

∂

∂x

((
1 − x2

) ∂Φ1

∂x

)
+

∂

∂y

((
1 − y2

) ∂Φ1

∂y

)
= −ρΦ1,

∂

∂x

((
1 − x2

) ∂Φ2

∂x

)
+

∂

∂y

((
1 − y2

) ∂Φ2

∂y

)
= −ρΦ2,

with solution:

Φm = Φij(x , y) = Pi(x)Pj(y),

where m = 1,2, and eigenvalues

ρ = kij = i(i + 1) + j(j + 1).
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Linear analysis

A graphical interpretation of D(x , y) is given in a plot of
(1 − x2)− (1 − y2):

-1.0

-0.5

0

0.5

1.0
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Nonlinear analysis

Similar to the case of homogeneous diffusion, after Taylor
expanding F of the general non-homogeneous diffusion
problem, we obtain:

ŵ
∂û
∂T

= D∇ · D(x)∇û + ηJû + Q(û, û) + C(û, û, û) + · · · .

The perturbation method produces:

O(ϵ) : Lu1 = 0,

O(ϵ2) : Lu2 = Q(u1,u1) + p1ηJc
pu1 − w1

∂u1

∂T
,

O(ϵ3) : Lu3 = Q(u1,u2) + C(u1,u1,u1) + p2ηJc
pu1 + p1ηJc

pu2+

p1Qc(u1,u1)− w1
∂u2

∂T
− w2

∂u1

∂T
,

but now L = (−ηJ− D∇ · (D(x , y)∇)).
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Nonlinear analysis

Now, we follow the same procedure as for the case of
homogeneous diffusion but using the eigenfunctions Pk (x) and
Pk (y), instead of eik·x.

For example, the solution of O(ϵ) is proposed as linear
combination of two spatial modes:

u1 = V(1)a(T )Pic (x) + V̄(1)ā(T )Pjc (y),

where kic jc satisfies the diffusion-driven instability conditions.

In all that follows, we need the following:

P2
k =

2k∑
n=0

ξnPn, PkPm =

q+m∑
n

ζnPn, P3
k =

3k∑
n

χnPn,

J. Dougall, Proc. Glasg. Math. Assn. 3 (1953) 121.
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Nonlinear analysis

By following the above procedure, we are able to find the
coefficients of the Stuart-Landau amplitude equations:

E =
1
2

〈
V∗

∣∣∣ V(1)
〉
,

α =
1
E

〈
V∗

∣∣∣∣∣∣
2ic∑

s=ic+1

Q(V(1),V(2)
s )ζ

(s)
ic + (V(1),V(1))χic

〉
,

β =
1
E

〈
V∗

∣∣∣ Q(V̄(1)
,Vij)ξ0 + Q(V(1), V̄(2)

0 ) + 3C(V̄(1)
,V(1))ξ0

〉
,

θ =
1
E

〈
V∗

∣∣∣ p2ηJc
p V(1)

〉
.

Calderón-Barreto, Aragón, Chaos. Sol. Frac. 165 (2022) 112869.
Elkin Calderón Barreto
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Nonlinear analysis

With these coefficients, the conditions for the formation of
stripes or spots can be determined.

For the VBAM model:

Stripes

Spots

Cannot predict

No Turing inst.

D(x,y)=1

bb

Legendre diffusion!
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Nonlinear analysis

a = 3, h = −1

Stripes: (c, b) = (0.01,−2.5)

Spots: (c, b) = (0.5,−2.5)

dc = 0.1681, kc = 14, and η = 121.757
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Nonlinear analysis

Jacobi

D(x) = (1 − x)1+α(1 + x)1+β
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Nonlinear analysis

Hermite

D(r) = cos
(
π
2 r
)2 e− tan(π

2 r)
2
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Conclusions
By studying a particular case of the space-dependent
diffusion coefficient, we propose a novel generalization of
the standard weakly nonlinear analysis using Legendre
functions instead of the standard Fourier approach.
Our approach can motivate further generalization by using
orthogonal eigenfunctions of any Sturm-Liouville problem.
Our results can also be of interest in other fields such as
climate modeling. Interestingly, in variants of the well
studied Budyko-Seller climate model the time-dependent
energy balance equation has the spatial operator
d
dx

(
k(1 − x2)du

dx

)
.
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Obrigado !
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