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Introduction
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The Turing instability

After more than 50 years, the mechanism proposed by Alan
Turing for the spontaneous generation of spatial patterns is still
paradigmatic.

Turing’s reaction-diffusion system:

— =DV?u+F(u) in Q,

Nn-YVu=0 on 99.

o u=(u, v)T are concentrations of chemicals that Turing
called, generically, morphogens.

@ D is the diagonal matrix of diffusion coefficients D, and D,.

e F=(f,g)"; f(u,v), g(u,v) are non-linear functions that
determine the kinetics of the chemical reaction.
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The Turing instability

The Turing instability

A reaction-diffusion systems exhibits a diffusion-driven
instability, also called Turing instability, if the homogeneous
steady-state is stable to small perturbations in the absence of
diffusion, but unstable to small spatial perturbations when
diffusion is present.

A.M. Turing, “The chemical basis of morphogenesis “, Philos. Trans. R. Soc. London B 237 (1952) 37.
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Linear analysis

If up = (Up, vo) is an steady state, i.e., F(up) = 0, we consider
U=up+V.

Linearizing about ug:
ov
5 = Jv, (1)

where J is the Jacobian associated with the reaction kinetics F,
evaluated at ug.

The condition for stability in the absence of diffusion are:

Tr(J) <0, Det(J) > 0.



Introduction
(o] lelele]

Linear analysis

The perturbation v is governed by the linear problem:

ov o
E_ID)V vV + Jv.

Consider the spectral problem:

V2o = —pd, in Q,
b= eik-xj p= k2 _ Hk”2

Therefore it seems reasonable to propose
v(X, 1) = Cx(t)e™*,
k=0

so that the evolution of the k-th Turing mode coefficient is

ocy

o (KD +3) G k=012,
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Linear analysis

Assuming Ck(t) = e ¢y, we get
()\k]l + k2D — J) ¢ = 0.
Nontrival solutions are obtained if
A2 —tr (—kzD + JI) Ak + det (—k"’D + J) =0.
Re(\x) > O is obtained if an only if det(—k°D + J) < 0.
It is assumed that D = diag[d, 1], were d = D,/D,. In this case

. — (J11J22 — 2J42J21) — 2¢/ —=J12J21det(J K2 = J11 + decJ2z
Cc J ’ 2dc .
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Linear analysis

Rel Wavenumbers
of unstable modes
0 k?m
¥ PN
d>d.
d<d Y,

J.D. Murray, Mathematical Biology II. = X%
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Linear analysis

Linear stability is useful to understand the basics of pattern
formation:

@ Diffusion is the key mechanism.

@ Parameter values for the formation of the pattern can be
determined.

@ Patterns have a fixed wave-length 1/kc.

But, once the instability criterion is established, the determined
dominant mode grows exponentially and is not valid at all times.

The long-time evolution of the pattern, and the determination of
the type of pattern, should be studied by means of a nonlinear
analysis.
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Weakly nonlinear analysis

For the nonlinear analysis it is taken into account that in a
Turing bifurcation the linear instability is preceded by
Re(Ax) = 0. Then, close to the bifurcation point the pattern
evolves on a slow temporal scale as e, where \x ~ 0.

Therefore, the most useful approach is the multiple scales
perturbation method, which has two key tricks:

@ Introduces scaled space and time coordinates to capture
the slow modulation of the pattern, treating these as
separate variables in addition to the original variables that
must be retained to describe the pattern state itself.

@ Uses what are known as solvability conditions in the formal
derivation.
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Weakly nonlinear analysis

@ Close to the bifurcation point we assume
u=ug+0a.
@ Taylor series expansion of F(u), around ug, produces
F(u) = Ja+ Q(G,G) + C(0,4,04) + - - -,

where J, Q and C are, respectively, the lineal quadratic and
cubic terms evaluated at uy.

@ A slow time scale is introduced:

T = wt, W:€W1—{—€2W3+€3W2--',
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Weakly nonlinear analysis

@ Therefore the perturbation is governed by

W o0
Vot

@ Now, perturbations are assumed to be:

= DV20 + JG + Q(0, 0) + C(4,4,0) + - .

u:uo+ﬁ:u0+(eu1+62uz+e3u3+~->
p=Po+p=pc+(epr+ oot pg e ),

where p is a chosen parameter of the model.

@ These perturbations are replaced in the above equation to
get, to the various orders of ¢, a hierarchy of linear
differential equations:



Introduction
0008000000

Weakly nonlinear analysis

°
O(E) . Luy =0,
2 c duy
0(6 ) : £u2 = Q(U‘],U‘]) +p1JPU1 — W1W,
0(e%) 1 Lug = Q(uy,up) + C(uy, Uy, uy) + pI5ur + prJ5uUx+
Oous Ouy
C — —_— — R
P1Q°(uq,uq) — wy 5T ~ We gt

where £ = (-] — DV?).

The analysis, which needs the O(¢?), require the solutions of
these linear system of equations. The algebra is horrendous
but necessary. J.D. Murray, Mathematical Biology .
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Weakly nonlinear analysis

@ The solutions of O(¢) is proposed as linear combination of
two spatial modes

uy = VWa(T)ekex 1 v g(T)e ke,

and solving the equation of O(¢), V(") and V() are
determined.

@ The equation of O(€?) is solved to obtain uy, after applying
the solvability condition (Fredholm alternative) to supress
secular terms.

@ With uy and u, at hand, the solvability condition is applied

to the equation of O(e3) to finally obtain the equations of
the amplitude functions a(T) and a(T):
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Weakly nonlinear analysis

The Stuart-Landau equations:

d|al? >

c|/T| = ala* + p|af’|a® + 0]a,
da? _ . 32 + 0|3
LT' = olal* + slaP|a® + 0|a®

The explicit expressions of the coefficients «, /3, and 6, result
from this nonlinear analysis.

We don't really need to solve these equations.
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Weakly nonlinear analysis

A linear stability analysis of the Stuart-Landau equation, which
has four equilibrium points, allows the identification of the type
of spatial pattern to be formed:

Steady state Conditions for linear stability | pattern
|aj® = 13> =0 6<0 None
a2 =032 == 9>0and 2 > 1 Stripes
la2==La?=0 9>0and £ > 1 Stripes
|a® = |a* = ;%5 f>0anda < —|3| <0 Spots
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Weakly nonlinear analysis

After 1952

The Turing Digital Archive: https://turingarchive.kings.cam.ac.uk.


https://turingarchive.kings.cam.ac.uk
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Weakly nonlinear analysis

Turing’s work on morphogenesis remained largely unknown
until more that 25 years when the existence of morphogen
gradients was pointed out: C. Nisslein-Volhard, E. Wieschaus, Nature
287 (1980) 795-801.

It was found that the Turing instability occurs in a great variety
of other systems as well:
@ Taylor vortex flow:
E. Koschmeider, Order and fluctuation in in equilibrium and
nonequilibrium statistical mechanics Wiley (1981).
@ Dynamic solidification:
J. Langer, Rev. Mod. Phys. 52 (1980) 1-28.

@ Laser Physics:
A. Newell, J. Maloney, Nonlinear optics, Addison-Wesley (1992).
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Most popular kinetics

Chemical kinetics

Name

Application

F(u,v)=pu(1—u/K)

Fisher

Bacteria population

F(u,v) = au — buv
G(u,v) = —cu+ duv

Lotka-Volterra

Prey-predator dynamics

F (U, V) = pu — pul + piP/v Gierer-Meinhardt General

G(u,v) = py — pyV + pu?

F(u,v)y=f(1-u)—uv? Gray-Scott Cell glycolysis
G(u,v) = bu — LPv

F(u,v,w)=[e(qv—uv+u(l—u)]" Oregonator Belusov-Zhabotinsky

G(u,v,w) =[¢' (—qv — uv + fw)] "
H(u,v,w)=u—-v

F(u,v)=a—(b+1)u+ Py
G(u,v) = bu — v?v

Brusselator

Auto-catalytic reactions

F(uv)y=a-u—4u/(1+ 4%
G(u,v)=6(u—uv/(1+u?)

Lengyel-Epstein

Chlorine-iodide-malonic
acid reaction

F(u,v)=~(a—u+t?v)
G(u,v) =7 (b-tAv)

Shnakenberg

Oregonator simplified

Flu,v)=—v+u+u®
G(u,v)=c(u—av-_)

Fitzhugh-Nagumo

Pulse propagation in
nerve membrane
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The BVAM model

The BVAM model was proposed in 1999 as a general
purposes, yet simple, model, which presents a rich bifurcation
structure and constitutes a versatile system for modeling
biological phenomena.

The BVAM model

ou 2 2
5 = DV u+77<u+av—cuv—uv),
ov . 2 2
5 = Vu+n<bv+hu+cuv+uv).

C. Varea, R.A. Barrio, J.L. Aragén, P.K. Maini, Bull. Math. Biol. 61 (1999) 483.

e >4,
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Coupling reaction-diffusion equations

One way to generate a larger variety of patterns is by coupling
two reaction-diffusion systems:

% — ]D)uvzu +F (U) + Ku (u7 V) )
ov 2

where Ky and Ky are coupling functions:

= (G ) = (hn )
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Thirteen-lined
Ground Squirrel

Hypostomus plecostomus

AN
=

Aragén, Varea & Barrio, FORMA 13 (1998) 213.
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Non-trivial domains

Varea, Aragén, Barrio Phys. Rev. E 60 (1999) 4588.



Some generalizations and applications
0000080000000 000

Modulation instability

The BVAM model can be transformed onto one equation that
resembles the one used to study localized structures in
nonlinear optics.

Wooley, Baker, Maini, Aragén, Barrio, Phys. Rev. E 82 (2010) 051929.
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Aragén, Barrio, Wooley, Baker, Maini, Phys. Rev. E 86 (2012) 026201.



Some generalizations and applications

0000008000000 000

10 1.0
C=1.15 C=1.21
0.5 0.5
2 ]
N 0.0 Qoo
S
05 -0
35 =03 00 05 = =05 0.0 0.5
X S u@2s) O . ] 5 u2s)® .
10
C=1.28
0.5
Q
oo
-05
15 .
=10 =05 0.0 0.5 5 10 —05 __00 05 10
u(25) u(25)

Aragén, Barrio, Wooley, Baker, Maini, Phys. Rev. E 86 (2012) 026201.
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Figure 6. Comparison of ECG plots obtained from experimental observations (top panels) and the reduced
system (3) (bottom panels). (a) Sinus tachycardia®, (b) Atrial flutter®, (c) Ventricular tachycardia and (d)

Ventricular flutter®,

Generation of ECG signals from a reaction-diffusion
model spatially discretized

M.A. Quiroz- uirez, O, iménez-Ramies, R. Vézauez-Medina, V. Brefa-Medina, J. L. Aragén & & R
ABario

Scientific Reports 9, Article number: 19000 (2019) | Cite this article
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Phyllotaxis

The arrangement of lateral organs (such as leaves, scales,
florets) on a plant surface.

B

Alternate Spiral Opposite Whorled
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e o)


https://turingarchive.kings.cam.ac.uk

Some generalizations and applications
0000000000000 00

Phyllotaxis

Regulation of phyllotaxis by polar auxin transport

Didier Reinhardt, Eva-Rachele Pesce, Pia Stieger, Therese Mandel, Kurt Malcolm

Bennett, Jan Traas, Jifi Friml & Cris Kuhlemeier &1

Nature 426, 255-260 (2003) | Cite this article
10k Accesses | 1087 Citations | 13 Altmetric | Metrics

Abstract
The regular arrangement of leaves around a plant's stem, called phyllotaxis, has for

turi ted the i i icians and natural scientists;
however, to date, studies of is have been largely ical, Leaves and flowers

are formed from the shoot apical meristem, triggered by the plant hormone auxin, Auxin is
transported through plant tissues by specific cellular influx and efflux carrier proteins.
Here we show that proteins involved in auxin transport regulate phyllotaxis. Our data
indicate that auxin is transported upwards into the meristem through the epidermis and
the outermost meristem cell layer. Existing leaf primordia act as sinks, redistributing auxin

d ing istribution in th Auxin cur
only at certain minimal distances from existing primordia, defining the position of future
primordia. This model for is accounts for its reil i aswell asits

argan initiation zone .
regularity and stability. leaf primordia
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An auxin-driven polarized transport model
for phyllotaxis

Henrik Jénsson**, Marcus G. Heisler', Bruce E. Shapiro®, Elliot M. Meyerowitz*", and Eric Mjolsness™
Computational Biology and Biological Physics Group, Department of Theoretical Physics, Lund University, 5-221 00 Lund, Sweden; ‘Division of Biology and

sBiological Network Modeling Center, California Institute of Technology, Pasadena, CA 91125; and lInstitute of Genomics and Bioinformatics and
Department of Computer Science, University of California, Irvine, CA 92697

Flower Development as an Interplay between Dynamical
Physical Fields and Genetic Networks

Rafael Angel Barrio'*, Aurora Hernindez-Machado’, C. Varea', José Roberto Romero-Arias’, Elena
Alvarez-Buylla*

Mo O, St i Consuents o
Mo OF. Moo

Vate, Fcuta g s, Barcions, Spon,

Super multi-armed and segmented spiral
pattern in a reaction-diffusion model

Ul GU

(e mail: gu_changgi@163 com.

JIAN GAO and CH;

Coresponding uthor: Ching

A plausible model of phyllotaxis

Richard S. Smith*", Soazi Guyomar( h'*, Therese Mandel’, Didier Reinhardt's, Cris Kuhlemeier,
and Przemyslaw Prusi

*Department of Computer Science, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N; and *Institute of Plant Sciences,
University of Berne, CH-3013 Berne, Switzerland

Elastic Domains Regulate Growth
Vincen Mirbe,Pradecp D, vk Bvond, and Organogenesis in the Plant
and Olivier Hamant shoot Apical Meris‘em

INRA,CNRS,ENS, U 1 46 Al e, 69364 Ly Cele 7, Frnc

Daniel Kierzkowski** Naom Nakayam, * Amne-Lise Routie-Kierkonska,
i . Emmanuelle Bayer, artne Schorderet, Didier froveet]
Cris Kuhlemeier,* Richard S. Smith't




Some generalizations and applications
0000000000000

Modelo Quimico

Dinamica de la auxina
con otras |Y[)Y|H[]HH‘G
en el MA

uy = DV?u + nf(u,v)
v = V3 +qg(u,v)

Arménicos esféricos

Modelo Mecanico P[e

o apical >

: : " P Bscla,

——+———P Simetria inicial ol ]

: H Yi(x)

: A \j

: ¢ Curvatura Esfuerzos y

: 1 espontanea > deformaciones
Pom=mt 2oy (0,0) Lo Domo apical
i i Ju dinamico

Patrones filotacticos
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(A)

T =250

(B)

(C)

Rueda, Romero, Aragén, Barrio, Plos One 13 (2018) e0201746.
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Space-dependent diffusion coefficient

The general problem:

% =DV - (D(x)Vu) + nF(u) in Q,

n-(D(x)Vu) =0 on 01,

where D = diag[d, 1] already considered, D(x) is a function that
describes the spatial variation of the diffusion rate, and  is a
non-dimensional coefficient related to the size of the space
domain
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Space-dependent diffusion coefficient (1D)

@ Maini, Benson, Sherrat, IMA J. Math. Appl. Med. Biol. 9 (1992) 197.
Wei, Winter, J. Nonlinear Sci. 19 (2009) 301.

D+ 0<x<¢
D(X):{ D~  t<x<At

@ Benson, Maini, Sherrat, J. Math. Biol. 37 (1998) 381.
D(x) = D+ nx?

@ Chacoén-Acosta, Niiez-Lopez, Pineda J. Chem. Phys. 152 (2020)

024101.
P 5 0 oo (P
ar ~ Doy [W(X)ax (W(X))] +F
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The general problem

The general problem:

g‘t' _ DV . (D(X)Vu) + pF(u) in Q,

n-(D(x)Vu) =0 on 09,

where D = diag[d, 1] already considered, D(x) is a function that
describes the spatial variation of the diffusion rate, and 7 is a
non-dimensional coefficient related to the size of the space
domain
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Linear analysis

As before, the perturbation v, around the steady state ug, is
governed by the linear problem:

v _
ot
n-(D(x)Vv) =0, onoQ.

DV - (D(x)VV) +nJdv, inQ

Consider the spectral problem:

V- (DX)VP) = —pd, inQ
n- (D(x)Ve) =0, on Q.

When solutions exist, there is an infinite but countable set of
real eigenvalues p;, and the corresponding set of
eigenfunctions &g, 4, .. ., form a complete basis functions on Q
satisfying the given boundary conditions. v
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Linear analysis

Therefore it seems reasonable to propose
V(X,t) = Cn(t)Pn(X),
n=0
By following the procedure already described, we obtain the
dispersion relation:
)\i — tr (—pkD + nJ) Ak + det (—pxD + nJ) =0,

from which we obtain:

(J11J22 — 2J12J21) — 21/ —J12J21det(J) _ 17311 + dell2z

ng ) IOC - 2dc

dc:

The linear problem is the same but p, must be known.
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Linear analysis

1D

Consider the 1D BVAM model in the space domain Q = [—1,1]:
ou 0 ou 2
T d Ix <D(X)8x> +77(u+av—cuv—uv )
ov._ 0 ov >
i 8X<D(X)8X>+n(bv+hu+cuv+uv>

ou ov _

D(x)axzo, D(X)B—X_O at x =—1,1.

This system has three steady states, including (ugp, vp) = (0,0).
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Linear analysis

Associated (Sturm-Liouville) spectral problem:

d ao :

do

D(X)a

—0, at x=—1,1.

D(x) =1 inthis case &k = cos(kx), px = k?® = (nm)?, and the
linear analysis yields:

d

1
° " 2,/ah(ah—b) —2ah+ b’

k2 =2 ( ah(ah — b) — ah + b) .
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Linear analysis

D(x) =1 —x? inthis case ®x = Py(x), the Legendre
polynomials of degree k € N, px = k(k + 1), and the linear
analysis yields the same d; but:

kc(kc+1):n2( ah(ah—b)—ah+b).

1.78

11.5

-1 -0.5 0 0.5 1

X
a=3,b=-2h=—1,c=0.95d; = 0.133975, n = 10.9808,

ke = 18.1501 (homogeneous), k; = 18 (Legendre). e
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Linear analysis

2D

In the space domain Q = [—1, 1] x [-1,1]

((;Ltl :dv.(pﬂ(x)Vu)Jrn(u+av—cuv—uv2>,
% = V. (Dw(X)VV)+n (bv + hu + cuv + uv2)

9

D11(X)VU -n=0, and DQQ(X)VV -n=0.
For D(x) it is proposed:

<1—x2 0 > 0
0 1-y?
D(x,y) = Y

- 1 - x2 0
0 ( 0 1—y2>
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Linear analysis

With this, the spectral problem becomes:
0 2\ 0% 0 2 9% _
m<(1_x>c‘))(>+8y<<1 v?) ay )= PP
9 2) 092\ , 0 o 2) 9% _
6)(((1_X>8x>+6y<<1 y)@y = 1P

with solution:

where m = 1,2, and eigenvalues

p=ki=i(i+1)+j(j+1).
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Linear analysis

A graphical interpretation of D(x, y) is given in a plot of
(1=x3) = (1= y?):

1.0 7‘
b 1.0
0.5
[ |
| i 0.5
L =
0.0| 0
b -0.5
~0.5]
7 ~1.0
_1.06°

“10 -05 00 05 10
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Nonlinear analysis

Similar to the case of homogeneous diffusion, after Taylor
expanding F of the general non-homogeneous diffusion
problem, we obtain:

Sl; = DV - D(X)V{ + nJb + Q(0,0) + C(4,0,0) + - -

The perturbation method produces:

O(e) . Lug =0,
0(e%) 1 Luz = Q(uq,uq) + pinJguy — Wi T
0(e%) : Lug = Q(uy,Uz) + C(uq, Uy, Uy) + penJ§uy + prnJouz+
6U2 8U1
(o]
p1Q°(uq,uq) — Wi —We T

but now £ = (—nJ — DV - (D(x, y)V)).
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Nonlinear analysis

Now, we follow the same procedure as for the case of
homogeneous diffusion but using the eigenfunctions P (x) and
Py(y), instead of kX,

For example, the solution of O(¢) is proposed as linear
combination of two spatial modes:

uy = VOa(T)P,(x) + VO A(T)P,(y),

where k; ;. satisfies the diffusion-driven instability conditions.

cle

In all that follows, we need the following:

2k g+m 3k
P2:Z§nPn7 PkPm:ZCan P/§:ZXnPn7
n=0 n n

J. Dougall, Proc. Glasg. Math. Assn. 3 (1953) 121.
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Nonlinear analysis

By following the above procedure, we are able to find the
coefficients of the Stuart-Landau amplitude equations:

1
- (1)
E= g (V).
1 2Ic
E<v* S Qv V@) 4 (v, vl ))x/c>,
S=ic+1
1 _ _
= £ (V] e vy + v, V@) + 31, Vg
;
E< ’7J°"”’>

Calderon-Barreto, Aragén, Chaos. Sol. Frac. 165 (2022) 112869.
Elkin Calderén Barreto
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Nonlinear analysis

With these coefficients, the conditions for the formation of
stripes or spots can be determined.

For the VBAM model:
D(x,y)=1 Legendre diffusion:

Stripes

Spots
. Cannot predict
. No Turing inst.
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Nonlinear analysis

a=3,h=-1
1 1.5
1.4 3
0.5
-1.3 2.5
0 112 2
1.1
-0.5 1.5
1
1
-1
-1 -0.5 0 0.5 1
Stripes: (c, b) = (0.01,-2.5)
Spots: (c,b) = (0.5,—2.5)

d: =0.1681, ke = 14, and n = 121.757



Nonlinear analysis

Jacobi

Eigenfunctions of the Legendre operator
0000080
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Nonlinear analysis

Hermite
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@ By studying a particular case of the space-dependent
diffusion coefficient, we propose a novel generalization of
the standard weakly nonlinear analysis using Legendre
functions instead of the standard Fourier approach.

@ Our approach can motivate further generalization by using
orthogonal eigenfunctions of any Sturm-Liouville problem.

@ Our results can also be of interest in other fields such as
climate modeling. Interestingly, in variants of the well
studied Budyko-Seller climate model the time-dependent
energy balance equation has the spatial operator

2 (k(1—x2)9L).
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