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Tentative road map

o The inpainting problem
@ T1, TV and mixed weighted T1-TV inpainting
@ Curvature-driven diffusion inpainting
@ A two step CDD + T1-TV inpainting method
@ Numerical implementation and results

e An inverse heat conduction problem
@ Origins of the problem
@ A brief historical mathematical tracking of the problem
@ Calderdn’s problem
@ Inverting the conductivity-to-temperature mapping
@ The inverse problem
@ Regularization: finding the right penalizers
@ Examples and numerical experiments
@ Open problems
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The inpainting problem

The inpainting problem

An inpainting problem consists of filling up the occluded regions of a damaged
image (missing data).
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The inpainting problem

An inpainting problem consists of filling up the occluded regions of a damaged

image (missing data).

Example of an occluded image.
Notation
o Q € R? is the image domain.
o D C Q is the region missing data. (Red in the figure)
o u: 8 — [0,1] is the light intensity function.
® v = u|q\p is the (possibly noisy) known part of u.
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Tikhonov-Phillips Inpainting Method

The order 1 Tikhonov-Phillips inpainting is obtained by minimizing
() = Tu = vli + MIVullZ, (T11)

with respect to u.
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LR GEEELERSEREGI T1, TV and mixed weighted T1-TV inpainting

Tikhonov-Phillips Inpainting Method

The order 1 Tikhonov-Phillips inpainting is obtained by minimizing
() = |Tu— vl[Z + M| VullZ, (T11)

with respect to u. T : L2(Q) — L2(Q\ D) is the occlusion operator, and A > 0 is
a regularization parameter.
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T1, TV and mixed weighted T1-TV inpainting
Tikhonov-Phillips Inpainting Method

The order 1 Tikhonov-Phillips inpainting is obtained by minimizing
() = |Tu— vl[Z + M| VullZ, (T11)

with respect to u. T : L2(Q) — L2(Q\ D) is the occlusion operator, and A > 0 is

a regularization parameter.

Occluded image. T1l inpainting.
To enhance edge preservation, add an anisotropy inducing matrix A to (T1l),

J() = [Tu= v|Z: FX|AVu||7. (T1A)
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T1, TV and mixed weighted T1-TV inpainting
Tikhonov-Phillips Inpainting Method

The order 1 Tikhonov-Phillips inpainting is obtained by minimizing
() = |Tu— vl[Z + M| VullZ, (T11)

with respect to u. T : L2(Q) — L2(Q\ D) is the occlusion operator, and A > 0 is

a regularization parameter.

Occluded image. T1l inpainting. T1A inpainting.
To enhance edge preservation, add an anisotropy inducing matrix A to (T1l),

J(t) = [Tu= v|Z: FX|AVu||7. (T1A)
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The inpainting problem

Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

J(u) = 1 Tu = vl + M[Vulll. (TVI)
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T1, TV and mixed weighted T1-TV inpainting
Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

T(u) = Tu = vl + MVl (TVI)
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T1, TV and mixed weighted T1-TV inpainting
Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

T(u) = Tu = vl + MVl (TVI)

Occluded image and TVI inpainting for
a thin occlusion.
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T1, TV and mixed weighted T1-TV inpainting
Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

T(u) = Tu = vl + MVl (TVI)

. A

Occluded image and TVI inpainting for Occluded image and TVI inpainting for
a thin occlusion. a wide occlusion.

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) LACIAM 2023, Rio de Janeiro 5/42



T1, TV and mixed weighted T1-TV inpainting
Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

T(u) = Tu = vl + MVl (TVI)

- =

Occluded image and TVI inpainting for Occluded image and TVI inpainting for
a thin occlusion. a wide occlusion.

Euler-Lagrange equation of (TVI) = inside the occlusion, the minimizer of (TVI)
is the steady state solution of ou { Vu ]

2 |Vul
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T1, TV and mixed weighted T1-TV inpainting
Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

T(u) = Tu = vl + MVl (TVI)

- =

Occluded image and TVI inpainting for Occluded image and TVI inpainting for
a thin occlusion. a wide occlusion.

Euler-Lagrange equation of (TVI) = inside the occlusion, the minimizer of (TVI)
is the steady state solution of 0 \V/
2 AV ALY T
ot |Vul

W,
where D = |Vu| .
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The inpainting problem

Curvature-Driven Diffusion Inpainting Method

k: curvature of the level lines of w.
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The inpainting problem Curvature-driven diffusion inpainting

Curvature-Driven Diffusion Inpainting Method

x: curvature of the level lines of u. If D

ou - o o %] i
=V [DVU] -V LW'W] .

(CDD)

LChan, T.F. and Shen, J. Mathematical models for local nontexture inpaintings,

LACIAM 2023, Rio de Janeiro 6/42

SIAM J. Appl. Math., 2002
Inverse diffusion problems
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Curvature-driven diffusion inpainting
Curvature-Driven Diffusion Inpainting Method

K: curvature of the level lines of u. If D = ||VRL|I|'
b [éw] _ e [l (CDD)
ot [Vul i

Occluded Image.
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Curvature-driven diffusion inpainting
Curvature-Driven Diffusion Inpainting Method

K: curvature of the level lines of u. If D = ||v'i|l|,
ou |k
=V bV =V Vul. CDD
ot [ 3 [|Vu| u} ( )
Occluded Image. Not a CDD steady state.
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Curvature-driven diffusion inpainting
Curvature-Driven Diffusion Inpainting Method

K: curvature of the level lines of u. If D = ||v'i|l|,
ou |k
=V bV =V Vul . CDD
ot [ [|Vu| ( )
Occluded Image. Not a CDD steady state. CDD inpainting.

Desired inpainting qualities:
@ Good performance at smooth- regions.
o Edge preservation.
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Curvature-driven diffusion inpainting
Curvature-Driven Diffusion Inpainting Method

K: curvature of the level lines of u. If D = ||v'i|l|,
ou |k
=V bV =V Vul . CDD
ot [ [|Vu| ( )
Occluded Image. Not a CDD steady state. CDD inpainting.

Desired inpainting qualities:
@ Good performance at smooth- regions.
o Edge preservation.

o Object connectivity.
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Mixed Weighted Regularization Inpainting

T() = |Tu—v|% + A11][|V1 = 0 AVu||)% + Arv[[|0AVY|||x.  (T1A-TVA)
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Mixed Weighted Regularization Inpainting

T() = |Tu—v|% + A11][|V1 = 0 AVu||)% + Arv[[|0AVY|||x.  (T1A-TVA)

6 :Q — [0,1] is a spatially varying weighting function.
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Mixed Weighted Regularization Inpainting

J(u) =||Tu—v|Z + Al VI = 0 AVu[|7: + Arv[[|0AVul|| 2. (TIA-TVA)
6 :Q — [0,1] is a spatially varying weighting function.

Where 6 ~ 0, J(u)~ || Tu— v|?% + Ar1||| AVu|||2. (T1A)

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 7/42



QLR GEEELERIEBEAE A two step CDD + T1-TV inpainting method

Mixed Weighted Regularization Inpainting

J(W) = |Tu— |+ Aral|[V1I = 0 AVu|||Z + A1v|||0AV ||| 2. (TIA-TVA)

6 :Q — [0,1] is a spatially varying weighting function.

Where 6 ~ 0, J(u)~ || Tu— v|2% + Ar1|[| AVu]||%.. (T1A)
Where 0 =~ 1, J(u) = ||Tu— v|% + Arv|[|AV ||| - (TVA)
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Mixed Weighted Regularization Inpainting

JW) = |Tu—v|% + Ar1|||[V1 = 0 AVU|||Z + Ay |||[0AV ||| (T1IA-TVA)

6 :Q — [0,1] is a spatially varying weighting function.
Where § =~ 0, J(u) = ||Tu— v||% + Ar1l[| AV |2 (T1A)
Where 0 =~ 1, J(u) = ||Tu— v|% + Arv|[|AV ||| - (TVA)

(Mazzieri-Spies- Temperini, “Mixed spatially varying L?> — BV regularization of inverse
ill-posed problems”, Journal of Inverse and lll-Posed Problems, 2015: 23(6):571-585.)

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) LACIAM 2023, Rio de Janeiro 7/42



Mixed Weighted Regularization Inpainting

JW) = |Tu—v|% + Ar1|||[V1 = 0 AVU|||Z + Ay |||[0AV ||| (T1IA-TVA)

6 :Q — [0,1] is a spatially varying weighting function.

Where § =~ 0, J(u) = ||Tu— v||% + Ar1l[| AV |2 (T1A)
Where 0 =~ 1, J(u) = ||Tu— v|% + Arv|[|AV ||| - (TVA)
(Mazzieri-Spies- Temperini, “Mixed spatially varying L?> — BV regularization of inverse

ill-posed problems”, Journal of Inverse and lll-Posed Problems, 2015: 23(6):571-585.)

A new two-step inpainting method

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) LACIAM 2023, Rio de Janeiro 7/42



Mixed Weighted Regularization Inpainting

JW) = |Tu—v|% + Ar1|||[V1 = 0 AVU|||Z + Ay |||[0AV ||| (T1IA-TVA)
6 :Q — [0,1] is a spatially varying weighting function.

Where § =~ 0, J(u) = ||Tu— v||% + Ar1l[| AV |2 (T1A)
Where 0 =~ 1, J(u) = ||Tu— v|% + Arv|[|AV ||| - (TVA)
(Mazzieri-Spies- Temperini, “Mixed spatially varying L?> — BV regularization of inverse

ill-posed problems”, Journal of Inverse and lll-Posed Problems, 2015: 23(6):571-585.)

A new two-step inpainting method

\'}

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) LACIAM 2023, Rio de Janeiro 7/42



Mixed Weighted Regularization Inpainting
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Where 0 =~ 1, J(u) = ||Tu— v|% + Arv|[|AV ||| - (TVA)

(Mazzieri-Spies- Temperini, “Mixed spatially varying L?> — BV regularization of inverse
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A new two-step inpainting method

CDD

inpainting

v—>u:;
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Mixed Weighted Regularization Inpainting

JW) = |Tu—v|% + Ar1|||[V1 = 0 AVU|||Z + Ay |||[0AV ||| (T1IA-TVA)
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Where § =~ 0, J(u) = ||Tu— v||% + Ar1l[| AV |2 (T1A)
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A new two-step inpainting method

CDD Low-pass
inpainting % filter
B R - up, = Gxug
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Mixed Weighted Regularization Inpainting

JW) = |Tu—v|% + Ar1|||[V1 = 0 AVU|||Z + Ay |||[0AV ||| (T1IA-TVA)
6 :Q — [0,1] is a spatially varying weighting function.
Where § =~ 0, J(u) = ||Tu— v||% + Ar1l[| AV |2 (T1A)

Where 0 =~ 1, J(u) = ||Tu— v|% + Arv|[|AV ||| - (TVA)

(Mazzieri-Spies- Temperini, “Mixed spatially varying L?> — BV regularization of inverse
ill-posed problems”, Journal of Inverse and lll-Posed Problems, 2015: 23(6):571-585.)

A new two-step inpainting method

CDD Low-pass
inpainting % filter . A = A(VUP)
B R - up = Gxu;——> 6=10(Vup,)
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Mixed Weighted Regularization Inpainting

JW) = |Tu—v|% + Ar1|||[V1 = 0 AVU|||Z + Ay |||[0AV ||| (T1IA-TVA)
6 :Q — [0,1] is a spatially varying weighting function.
Where § =~ 0, J(u) = ||Tu— v||% + Ar1l[| AV |2 (T1A)

Where 0 =~ 1, J(u) = ||Tu— v|% + Arv|[|AV ||| - (TVA)

(Mazzieri-Spies- Temperini, “Mixed spatially varying L?> — BV regularization of inverse
ill-posed problems”, Journal of Inverse and lll-Posed Problems, 2015: 23(6):571-585.)

A new two-step inpainting method

CDD Low-pass T1A-TVA
inpainting % filter A = A(Vup) inpainting
MU up = G i 0= 0(Vi)
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Some assumptions
e Q=[0,1] x [0, 1].
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The inpainting problem

up construction

Some assumptions
e Q=[0,1] x [0, 1].

o UecR™M e RM g that Up(i—1)+m = Um, VI, m.
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The inpainting problem

up construction

Some assumptions
e Q=[0,1] x [0, 1].

o UecR™M e RM g that Up(i—1)+m = Um, VI, m.

CDD algorithm
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The inpainting problem

up construction

Some assumptions
e Q=[0,1] x [0, 1].

o UecR™M e RM g that Up(i—1)+m = Um, VI, m.

CDD algorithm !
Q Set u® ¢ ﬁMz, n=0and f = V- [ V], where » P [ﬁgl]
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The inpainting problem Numerical implementation and results

up construction

Some assumptions
e Q=[0,1] x [0, 1].
o UecRMM | c RM g0 that Up(i—1)+m = Um, VI, m.

CDD algorithm
Q Set U cRM™ n=0and F=V- {ﬂVU},wheren:V- [V“}

|V ul [V ul
@ Compute a step of the Adams-Bashforth-Moulton predictor-corrector method:

gD = 4 % [23F(u) - 16f(uls V) + 5£(uly )],

a2 o) 4 [5r(a ) + 8 (u) e §
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The inpainting problem Numerical implementation and results

up construction

Some assumptions
e Q=[0,1] x [0, 1].
o UecRMM | c RM g0 that Up(i—1)+m = Um, VI, m.

CDD algorithm
Q Set U cRM™ n=0and F=V- {ﬂVU},wheren:V- [V“}

|V ul [V ul
@ Compute a step of the Adams-Bashforth-Moulton predictor-corrector method:

gD = 4 % [23F(u) - 16f(uls V) + 5£(uly )],

a2 o) 4 [5r(a ) + 8 (u) e §

O If the stopping criterion is reached, u; = u(™1) Else, set n= n+1 and
repeat from Step 2.
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The inpainting problem Numerical implementation and results

up construction

Some assumptions
Q =[0,1] x [0, 1].
o UecRMM | c RM g0 that Up(i—1)+m = Um, VI, m.

CDD algorithm
Q Set U cR™ pn=0and F=V- { aj:c Vu} where k = V - [V“}

[Vul [Vul
@ Compute a step of the Adams-Bashforth-Moulton predictor-corrector method:

gD = 4 % [23F(u) - 16f(uls V) + 5£(uly )],

u’(7171+1):u,(:)+17h2 |:5f(lj,(,:+l))+8f( n)) ( (n— 1))]

O If the stopping criterion is reached, u; = u(™1) Else, set n= n+1 and
repeat from Step 2.

Convolution u, = G * u,, where G is a low-variance Gaussian kernel.
LACIAM 2023, Rio de Janeiro 8,42



The inpainting problem

Anisotropy matrix field and weighting function

Anisotropy matrix field A

e
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Anisotropy matrix field and weighting function

Anisotropy matrix field A
A(x,y) € R?*2 is a symmetric positive definite matrix V(x,y) € Q, such that:

ol
o

Wl
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Anisotropy matrix field and weighting function

Anisotropy matrix field A
A(x,y) € R?*2 is a symmetric positive definite matrix V(x,y) € Q, such that:

o If Vup(x,y) =0, A(x,y) = 1.
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The inpainting problem Numerical implementation and results

Anisotropy matrix field and weighting function

Anisotropy matrix field A
A(x,y) € R?*2 is a symmetric positive definite matrix V(x,y) € Q, such that:

o If Vupy(x,y) =0, A(x,y) = 1.
o If Vuy(x,y) #0, A(x,y) has eigenvalues oj(x, y) and eigenvectors v;(x, y),
such that
V]_(X,)/)J_VUP(X,)/), Ul(Xay):l
va(x,y) || Vup(x,y), o2(x, y) = h(|Vup(x,y)|)
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Numerical implementation and results
Anisotropy matrix field and weighting function

Anisotropy matrix field A
A(x,y) € R?*2 is a symmetric positive definite matrix V(x,y) € Q, such that:

o If Vupy(x,y) =0, A(x,y) = 1.
o If Vuy(x,y) #0, A(x,y) has eigenvalues oj(x, y) and eigenvectors v;(x, y),
such that
V]_(X,)/)J_VUP(X,)/), Ul(Xay):l
VQ(X7y) H VUP(Xay)a GQ(va):h(|vuP(X7y)|)
@ The function h above is decreasing, with 0 < h(t) <1Vt € RF.
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Anisotropy matrix field and weighting function

Anisotropy matrix field A
A(x,y) € R?*2 is a symmetric positive definite matrix V(x,y) € Q, such that:

o If Vupy(x,y) =0, A(x,y) = 1.
o If Vuy(x,y) #0, A(x,y) has eigenvalues oj(x, y) and eigenvectors v;(x, y),
such that
Vl(va)J-VUP(Xay)v Ul(Xay):l
VQ(X7y) H VUP(Xay)a UQ(va):h(|vuP(X7y)|)
@ The function h above is decreasing, with 0 < h(t) <1Vt € RF.

A=1—(1-h(|Vup)) Lgﬂ;] [|EZZ|] T
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The inpainting problem Numerical implementation and results

Anisotropy matrix field and weighting function

Anisotropy matrix field A
A(x,y) € R?*2 is a symmetric positive definite matrix V(x,y) € Q, such that:

o If Vupy(x,y) =0, A(x,y) = 1.
o If Vuy(x,y) #0, A(x,y) has eigenvalues oj(x, y) and eigenvectors v;(x, y),
such that
Vl(va)J-VUP(Xay)v Ul(Xay):l
VQ(X7y) H VUP(Xay)a UQ(va):h(|vuP(X7y)|)
@ The function h above is decreasing, with 0 < h(t) <1Vt € RF.

A=1—(1-h(|Vup)) Lgﬂ;] [|EZZ|] T

Weighting function 6
We want ¢ = 0 where |Vup,| is small and § ~ 1 where |Vu,| is large.
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The inpainting problem Numerical implementation and results

Anisotropy matrix field and weighting function

Anisotropy matrix field A
A(x,y) € R?*2 is a symmetric positive definite matrix V(x,y) € Q, such that:

o If Vupy(x,y) =0, A(x,y) = 1.
o If Vuy(x,y) #0, A(x,y) has eigenvalues oj(x, y) and eigenvectors v;(x, y),
such that
Vl(va)J-VUP(Xay)v Ul(Xay):l
VQ(X7y) H VUP(Xay)a UQ(va):h(|vuP(X7y)|)
@ The function h above is decreasing, with 0 < h(t) <1Vt € RF.

A=1—(1-h(|Vup)) Lgﬂ;] [|EZZ|] T

Weighting function 6
We want ¢ = 0 where |Vup,| is small and § ~ 1 where |Vu,| is large.

|Vup(x, y)| :
mMax(x.yyeq | Vip(x, y)l

0(x,y) = (11)

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) LACIAM 2023, Rio de Janeiro 9/42



The two-step inpainting algorithm

Full algorithm
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The inpainting problem
The two-step inpainting algorithm

Full algorithm
|%|xD + Xa\D

1
|vu| VU:| 4F X(U i V)XQ\D'

e Find uj by solving % =V. [
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The inpainting problem
The two-step inpainting algorithm

Full algorithm

|%|xD + Xa\D 1
TVU 4F X(U i V)XQ\D'

o Convolve u, = G * uy, and compute A = A(Vu,) and 6 = 0(Vu,).

e Find uj by solving % =V. [
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Numerical implementation and results
The two-step inpainting algorithm

Full algorithm
|%|xD + Xa\D 1
—_— -V —(u— .
‘VU| ul + A(u V)XQ\D
o Convolve u, = G * uj, and compute A = A(Vu,) and 0 = 6(Vup).
@ Find the minimizer of

J(u) = Tu = vlfe + AnlllV1 = 0 AVl + A7y [[|0AV ]2 *

e Find uj; by solving % =V.

aaa ractaratinn with a half.Anadratic annrnarh ta mivad
LACIAM 2023, Rio de Janeiro
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Numerical implementation and results
The two-step inpainting algorithm

Full algorithm

|%|xD + Xa\D 1
TVU 4F X(u = V)XQ\D-
o Convolve u, = G * uj, and compute A = A(Vu,) and 6 = 6(Vup).
@ Find the minimizer of

J(u) = Tu = vlE + AnalllV1 = 0 AVl + Arv[|0AV u|| 1.

e Find uy by solving % =V.

Occluded Image.
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Numerical implementation and results
The two-step inpainting algorithm

Full algorithm

|%|xD + Xa\D 1
WVU 4F X(u = V)XQ\D-

o Convolve u, = G * uj, and compute A = A(Vu,) and 6 = 6(Vup).
@ Find the minimizer of

J(u) = Tu = vlE + AnalllV1 = 0 AVl + Arv[|0AV u|| 1.

Occluded Image. T1l inpainting.

e Find uy by solving % =V.
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Numerical implementation and results
The two-step inpainting algorithm

Full algorithm

|%|xD + Xa\D 1
WVU I X(U i V)XQ\D-

o Convolve u, = G * uj, and compute A = A(Vu,) and 6 = 6(Vup).
@ Find the minimizer of

J(u) = Tu = vlE + AnalllV1 = 0 AVl + Arv[|0AV u|| 1.

Occluded Image. T1l inpainting. CDD inpainting.

e Find uy by solving % =V.
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Numerical implementation and results
The two-step inpainting algorithm

Full algorithm

|%|xD + Xa\D 1
WVU I X(U i V)XQ\D-
o Convolve u, = G * uj, and compute A = A(Vu,) and 6 = 6(Vup).
@ Find the minimizer of

J(u) = Tu = vlE + AnalllV1 = 0 AVl + Arv[|0AV u|| 1.

Occluded Image. T1l inpainting. CDD inpainting. Two-step CDD +
T1A-TVA inpainting.

e Find uy by solving % =V.
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Numerical implementation and results
The two-step inpainting algorithm

Full algorithm

|%|xD + Xa\D 1
WVU I X(U i V)XQ\D-

o Convolve u, = G * uj, and compute A = A(Vu,) and 6 = 6(Vup).
@ Find the minimizer of

J(u) = Tu = vlE + AnalllV1 = 0 AVl + Arv[|0AV u|| 1.

Occluded Image. T1l inpainting. CDD inpainting. Two-step CDD +
T1A-TVA inpainting.

T CDD"=* L1
PSNR = 20log,, (Mo — al| ') | 20.140 35.496  36.330
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The inpainting problem

Diffusion methods in inpainting

Inpainting as an inverse problem: Total Variation + Curvature Driven Diffusion Method
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Numerical implementation and results
Diffusion methods in inpainting

Inpainting as an inverse problem: Total Variation + Curvature Driven Diffusion Method

Occluded Image.
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Numerical implementation and results
Diffusion methods in inpainting

Inpainting as an inverse problem: Total Variation + Curvature Driven Diffusion Method

T1l inpainting.
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Numerical implementation and results
Diffusion methods in inpainting

Inpainting as an inverse problem: Total Variation + Curvature Driven Diffusion Method

T1l inpainting. CDD inpainting.
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Numerical implementation and results
Diffusion methods in inpainting

Inpainting as an inverse problem: Total Variation + Curvature Driven Diffusion Method

T1l inpainting. CDD inpainting. T1A-TVA inpainting.
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Numerical implementation and results
Diffusion methods in inpainting

Inpainting as an inverse problem: Total Variation + Curvature Driven Diffusion Method

Performance comparisons
Gaussian additive noise= 2 %
Til CDD T1A-TVA
PSNR | 20.815 22.292 22.551

T1l inpainting. CDD inpainting. T1A-TVA inpainting.
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Numerical implementation and results
Diffusion methods in inpainting

Inpainting as an inverse problem: Total Variation + Curvature Driven Diffusion Method

Performance comparisons
Gaussian additive noise= 2 %
Til CDD T1A-TVA
PSNR | 20.815 22.292 22.551

F. Ibarrola, R. Spies, “A two-step mixed inpainting method with
curvature-based anisotropy and spatial adaptivity”’, Inverse
Problems and Imaging, Volume 11, No. 2, 2017, pp 247-262,[7]

T1l inpainting. CDD inpainting. T1A-TVA inpainting.
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An inverse heat conduction problem

|dentification of the conductivity in a heat conduction
problem

A recent result s |(Int. J. Numer. Methods Eng. 2022; 1-18.) First published: 02 November 2022 |
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in an inverse heat conduction problem
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Origin of the problem

Flux manipulation - design of thermal materials or metamaterials
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nverse heat conduct

Origin of the problem

Flux manipulation - design of thermal materials or metamaterials

International Journal of Thermal Sciences 12

Contents lists available at ScienceDirect

International Journal of Thermal Sciences

journal homepage: www.elsevier.com/locate/ijts

Optimization-based design of easy-to-make devices for heat flux )
manipulation St

Victor D. Fachinotti™*, Angel A. Ciarbonetti”, Ignacio Peralta®, Ignacio Rintoul”

@ Centro de Investigacién de Métodos Computacionales (CIMEC), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Cientfficas y Técnicas
(CONICET), Predio CONICET “Dr. Alberto Cassano” Colectora Ruta Nac. 168 km 0, Paraje EL Pozo, CP 3000, Santa Fe, Argentina

® Instituto de Desarrollo Tecnoldgico para la Industria Quimica (INTEC), Universidad Nacional del Litoral (UNL)/ Consejo Nacional de Investigaciones Cientificas y
Técnicas (CONICET), Predio CONICET “Dr, Alberto Cassano”, Colectora Ruta Nac. 168 km 0, Paraje El Pozo, CP 3000, Santa Fe, Argentina

ARTICLE INFO ABSTRACT

Keywords: In this work, we present a new method for the design of heat flux manipulating devices, with emphasis on their

Heat flux manipulation ‘manufacturability. The design is obtained as solution of a nonlinear optimization problem where the objective

Optimization-based design function represents the given heat flux manipulation task, and the design variables define the material dis-

Easy-to-make device tribution in the device. In order to facilitate the fabrication of the device, the material at a given point is chosen

;‘:‘;m“rﬂ‘_‘"_‘f““"‘ between two materials with highly different conductivity. By this way, the whole device can be seen, in the large
scale, as a metamaterial having a specific anisotropic effective conductivity. As an application example, we
designed a heat flux inverter which was so simple that it could be hand-made. The performance of this device for
heat flux inversion was experimentally tested, proving that it was more efficient than a more complex device
designed using the classical transformation thermodynamics approach.
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An inverse heat conduction problem

Flux reversal (a way of violating Fourier's law ?)

Numerical results ...
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An inverse heat conduction problem

Flux reversal (a way of violating Fourier's law ?)
Numerical results ...

a) Copper fraction

b) Temperature (K]

¢) Heat flux
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An inverse heat conduction problem

Flux reversal (a way of violating Fourier's law ?)

Experimental set-up and validation ...
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Flux reversal (a way of violating Fourier's law ?)

Experimental set-up and validation ...

a) Fabricated device

b) Tested domain
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Flux reversal (a way of violating Fourier's law ?)

Experimental set-up and validation ...

a) Fabricated device

)

Experimental setup

l 303e402

b) Tested domain
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An inverse heat conduction problem

Flux reversal (a way of violating Fourier's law ?)

Comparison...
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An inverse heat conduction problem

Flux reversal (a way of violating Fourier's law ?)

Comparison...
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=
3
S 200}

80 min | 110 min

ntal
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Fig. 9. Temperature along the line AF: experimental vs. numerical.
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A brief historical mathematical tracking of the problem

Problem: of determining the elliptic coefficient profile function in an elliptic
boundary value problem.

Inverse diffusion problems



An inverse heat conduction problem A brief historical mathematical tracking of the problem

A brief historical mathematical tracking of the problem

Problem: of determining the elliptic coefficient profile function in an elliptic
boundary value problem.

Applications: electrical conductivity problems, oil resevoir and ground water flow
problems ([31, 4], [8], [11], [17])
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A brief historical mathematical tracking of the problem
A brief historical mathematical tracking of the problem

Problem: of determining the elliptic coefficient profile function in an elliptic
boundary value problem.

Applications: electrical conductivity problems, oil resevoir and ground water flow
problems ([31, 4], [8], [11], [17])

A. P. Calderén’s problem ([6], 1980, ATAS of SBM, Rio de Janeiro 1980):
Q C R", n > 2 bounded, 022 Lipschitz, u, € H(Q) solution of the Dirichlet BVP

V.(kVu) =0, x€Q,
u=p, x € 082,

and

Qulp) = /ﬂ k() (Viig(x))? dx = /,9 - Pl k(x) e s,
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Is k uniquely determined by Qj ?.
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An inverse heat conduction problem

Calderén’s problem:

Is k uniquely determined by Qj ?.
If so, try to compute k in terms of Q

R BT Tt
ﬂ-t'\\»'n’,,;,.,,.‘.‘ .;,,,“m,#;'ﬂ e ol ‘P
4
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An inverse heat conduction problem Calderén’s problem

Calderdn's problem:

Is k uniquely determined by Qy 7.
If so, try to compute k in terms of Q
Calderén proved that:

© M: k — Q is bounded and analytic in L3,(€2);

@ For the linearized problem the answer is affirmative: dM|x=const. is an
injective mapping;

o If k ~ const. then k is “nearly” determined by Q.
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An inverse heat conduction problem Calderén’s problem

Calderdn's problem:

Is k uniquely determined by Qy 7.
If so, try to compute k in terms of Q
Calderén proved that:

® M : k — Q is bounded and analytic in L35%(£2);

@ For the linearized problem the answer is affirmative: dM|x=const. is an
injective mapping;

o If k ~ const. then k is “nearly” determined by Q.

v Result extended and formalized by Sylvester and Uhlmann in 1986 (s only. for
= 2.
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Calderdn's problem:

Is k uniquely determined by Qy 7.
If so, try to compute k in terms of Q
Calderén proved that:
® M : k — Q is bounded and analytic in L35%(£2);
@ For the linearized problem the answer is affirmative: dM|x=const. is an
injective mapping;
o If k ~ const. then k is “nearly” determined by Q.
v Result extended and formalized by Sylvester and Uhlmann in 1986 (s only. for
= 2.
v Kohn and Vogelius, 1984 o): k real analytic = it can be uniquely determined
from Q. Extended to piecewise real analytic k in 1985 ().
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Calderdn's problem:

Is k uniquely determined by Qy 7.
If so, try to compute k in terms of Q
Calderén proved that:

® M : k — Q is bounded and analytic in L35%(£2);

@ For the linearized problem the answer is affirmative: dM|x=const. is an
injective mapping;

o If k ~ const. then k is “nearly” determined by Q.

v Result extended and formalized by Sylvester and Uhlmann in 1986 (s only. for
= 2.

v Kohn and Vogelius, 1984 (uo): k real analytic = it can be uniquely determined
from Q. Extended to piecewise real analytic k in 1985 ().

v Sylvester and Uhlmann, 1987 e): k sufficiently smooth = Qx uniquely
determines k. More precisely, they showed that the mapping M is injective over
C=(Q) N BN
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An inverse heat conduction problem

Determining k from knowledge of u on the whole 2

Assumptions on k and/or u are needed:
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Determining k from knowledge of u on the whole 2

Assumptions on k and/or u are needed:
e eg. Vu=0in Qpy C Q, the k cannot be uniquely determined;
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Inverting the conductivity-to-temperature mapping
Determining k from knowledge of u on the whole Q2
Assumptions on k and/or u are needed:

e eg. Vu=0in Qpy C Q, the k cannot be uniquely determined;

o If |[Vu| > 0 everywhere on €2, once the values of k are given on a hypersurface
transversal to Vu, the method of characteristics will yield a unique solution.
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An inverse heat conduction problem Inverting the conductivity-to-temperature mapping

Determining k from knowledge of u on the whole Q2

Assumptions on k and/or u are needed:
0 eg. Vu=0in Qu C Q, the k cannot be uniquely determined;

o If |[Vu| > 0 everywhere on €2, once the values of k are given on a hypersurface
transversal to Vu, the method of characteristics will yield a unique solution.

@ Several authors obtained similar uniqueness results under weaker assumptions
on Vu under diverse assumptions on K (g [, [2], (5], [13]).
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An inverse heat conduction problem Inverting the conductivity-to-temperature mapping

Determining k from knowledge of u on the whole Q2

Assumptions on k and/or u are needed:
e eg. Vu=0in Qpy C Q, the k cannot be uniquely determined;

o If |[Vu| > 0 everywhere on €2, once the values of k are given on a hypersurface
transversal to Vu, the method of characteristics will yield a unique solution.

@ Several authors obtained similar uniqueness results under weaker assumptions
on Vu under diverse assumptions on K (g [, [2], (5], [13]).

Problem of recovering k from information about u:
o all works assume some degree of smoothness on k (at least differentiability);

@ never true in practical applications, where at best, only piecewise smoothness
and jump discontinuities are to be expected;

@ the available data may consist only of noisy measurements at some discrete
points.
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An inverse heat conduction problem Inverting the conductivity-to-temperature mapping

Determining k from knowledge of u on the whole Q2

Assumptions on k and/or u are needed:
e eg. Vu=0in Qpy C Q, the k cannot be uniquely determined;

o If |[Vu| > 0 everywhere on €2, once the values of k are given on a hypersurface
transversal to Vu, the method of characteristics will yield a unique solution.

@ Several authors obtained similar uniqueness results under weaker assumptions
on Vu under diverse assumptions on K (g [, [2], (5], [13]).

Problem of recovering k from information about u:
o all works assume some degree of smoothness on k (at least differentiability);

@ never true in practical applications, where at best, only piecewise smoothness
and jump discontinuities are to be expected;

@ the available data may consist only of noisy measurements at some discrete
points.

Although the mathematical theory of elliptic equations with discontinuous
principal coefficients is well known (4 n2)), there is not much-done on the inverse
problem of recovering k in these cases.
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Inverting the conductivity-to-temperature mapping
A regularized variational approach

Setting: Let Q2 C R” (n > 2) a bounded open set with smooth boundary
=00 = rD Ur/\/, with Tp NIy = 0, c, k, f,g, he Lz(Q) with

0 <y < k(x) <7 and ¢ > 0.

Problem:

—div(k(x)Vu(x)) + c(x)u(x) = f(x), x € Q, (a)
P:P(kvcvagah): U(X):g(x)7 x € [p, (b)
k(x)Vu(x) - A= h(x), xeln. (o)
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An inverse heat conduction problem Inverting the conductivity-to-temperature mapping

A regularized variational approach

Setting: Let Q C R” (n > 2) a bounded open set with smooth boundary
[=9Q = TpUTy, with Tp N[y =0, ¢, k f,g,h e L2(Q) with
|0<'yl gk(x)§72|and c>0.

Problem:
—div(k(x)Vu(x)) + c(x)u(x) = f(x), x € Q, (a)
P ="P(k,c,f,g, h): { ulx)=g(x), x€lp, (b)
k(x)Vu(x) - A= h(x), xeln. (o)

—div(k(2)Vu(z)) + c(x)u(z) = f(z) e

I

ulp, = g(z)

Schematic representation of problem P(k,c, f, g, h)
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An inverse heat conduction problem
Assume g € C(I'p) and define Hi () = {ve H(Q) : v|r, =g} -
Multiplying (a) by v € HE, () and integrating we obtain:

] Lo . 1. | sl
|i [
3 (G e il
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Inverting the conductivity-to-temperature mapping
Assume g € C(I'p) and define Hi () = {ve H(Q) : v|r, =g} -
Multiplying (a) by v € H}D)O(Q) and integrating we obtain:

0:/(<kVu,Vv>+cuv) dx—/fv dx—/ hv ds
Q Q Fay
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Inverting the conductivity-to-temperature mapping
Assume g € C(I'p) and define Hi () = {ve H(Q) : v|r, =g} -
Multiplying (a) by v € Hr1D 0(€2) and integrating we obtain:

Oz/((kVu,Vv>+cuv) dx—/fv dx—/ hv ds
Q Q [y
= F(u,v).

Variation formulation of P:
VF(P): Find u_in HE, () such that F(u,v) =0 for all v € HE (), ie.

/ ((kVu,Vv) + cuv) dx = / fv dx+/ hv ds, for all v € H_ ().
Q Q Iy
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Inverting the conductivity-to-temperature mapping
Assume g € C(I'p) and define Hi () = {ve H(Q) : v|r, =g} -
Multiplying (a) by v € Hr1D 0(€2) and integrating we obtain:

0= / ((kVu,Vv) + cuv) dx—/ fv dx—/ hv ds
Q Q T
= F(u,v).
Variation formulation of P:
VF(P): Find u_in HE, () such that F(u,v) =0 for all v € HE (), ie.

/ ((kVu,Vv) + cuv) dx = / fv dx+/ hv ds, for all v € H_ ().
Q Q Iy

Define By : H(R) x HY(Q) — R by
By c(u,v) = /Q(<kVu,Vv> + cuv) dx.
Then By . defines an inner product on H*(2) with associated norm
o, = | (IV0l? +cluf)
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An inverse heat conduction problem

Define also the energy functional J : H}mg(Q) — R by

J(v) = %Bk7c(v, v)—/ﬂfv dx—/r hv ds
N

:1/ ((kVv,Vv) 4+ cv?) dx—/fvdx—/ hv ds.
2 Ja Q i




Define also the energy functional J : H}D £(§) = R by
9

1
J(v) = ZBkc(v, v)—/ fv dx—/ hv ds
2 Q T
1
:—/ ((va,Vv)+cv2) dx—/fvdx—/ hv ds.

2 Jq Q Y
Then
Lemma

For any u € Hi, (Q) and any v € H{_ ,(Q) there holds

d
EJ(U + tv)|im0 = F(u,v),

Inverse diffusion problems



Define also the energy functional J : H}D £(§) = R by
K

J(v) = 1Bk,c(V, V)—/fv dx—/ hv ds
2 . h
:1/(<va,Vv>—|—cv2) dx—/fvdx—/ hv ds.
2 Jo i N
Then

Lemma

For any u € H}D,g(Q) and any v € Hf_ () there holds

d
EJ(u+tv)|t:0 = F(u,v),

S— . o

~and finally " ¥

ki

| Theorem

? Problem VF(P) does have a unique solution u* € Hf (Q), characterized by the
! unique minimizer of the energy functional J, i.e.

| ut = 3rgm""ueH}D’g(Q) J(u).

(L e s bl s i - ELES, bt i et e al
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An inverse heat conduction problem The inverse problem

The inverse problem

Given Q, I'p, 'y, ¢, f, g and h, and a prescribed temperature distribution
i € HE, ;(Q) find the corresponding distributed conductivity field k(-) such that

u* = {. That is, “invert” problem P = P(k,c,f, g, h) with respect to k.
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An inverse heat conduction problem The inverse problem

The inverse problem

Given Q, I'p, 'y, ¢, f, g and h, and a prescribed temperature distribution
i € HE, ;(Q) find the corresponding distributed conductivity field k(-) such that
u* = {. That is, “invert” problem P = P(k,c,f, g, h) with respect to k.

For simplicity n =2, and f = h = 0. Thus given i(x,y) € H}D)g(Q) we want to
find k = k(x, y) such that 0 be the unique solution of problem P(k,c,f, g, h).
Then k(x,y) must satisfy:

i
0 = EJ(u+tv)|t:0

:/Q(<kVﬁ,VV> +cav) dxdy, Vv e HL o(Q).
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An inverse heat conduction problem The inverse problem

The inverse problem

Given Q, I'p, 'y, ¢, f, g and h, and a prescribed temperature distribution
i € HE, ;(Q) find the corresponding distributed conductivity field k(-) such that
u* = {. That is, “invert” problem P = P(k,c,f, g, h) with respect to k.

For simplicity n =2, and f = h = 0. Thus given i(x,y) € H}D)g(Q) we want to
find k = k(x, y) such that 0 be the unique solution of problem P(k,c,f, g, h).
Then k(x,y) must satisfy:

i
0 = EJ(u+tv)|t:0

:/Q(<kVﬁ,VV> +cav) dxdy, Vv e HL o(Q).

The optimality equation
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An inverse heat conduction problem The inverse problem

Discretization

Let Q;, 1 < <L, be a partition of Q by open sets. For each i let (x;, y;) € Q;
and for any function g(x, y) defined on Q let us denote with g; the value of g at
the point (x;, y;), i-e. gi = q(x;, y;). The optimality equation reads:
L
0= Z [k, (ﬁx,,'VX’,' + l,J\y’,'Vy,,') = C,'ﬁ,'V,'] m(Q,-)7 Vv € HI}D,O(QL

i=1
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An inverse heat conduction problem The inverse problem

Discretization

Let Q;, 1 < <L, be a partition of Q by open sets. For each i let (x;, y;) € Q;
and for any function g(x, y) defined on Q let us denote with g; the value of g at
the point (x;, y;), i-e. gi = q(x;, y;). The optimality equation reads:
L
0= [ki(Beivai + fyivyi) + Glvi] m(Q), Vv € HE o(Q),

i=1
or, assuming a regular partition so that m(£2;) is constant

L L

> ki (fg,iviei Filigiivy, i) = — > cilivi, v € HE, o(Q).
= =18
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An inverse heat conduction problem The inverse problem

Discretization

Let Q;, 1 < <L, be a partition of Q by open sets. For each i let (x;, y;) € Q;

and for any function g(x, y) defined on Q let us denote with g; the value of g at

the point (x;, y;), i-e. gi = q(x;, y;). The optimality equation reads:
L
0= Z [k, (ﬁx,,'VX’,' + L,}y’,'Vy,,') aF C,'ﬁ,'V,'] m(Q,-)7 Vv € HI}D,O(Q)7
i=1
or, assuming a regular partition so that m(£2;) is constant
L L

> ki (fg,iviei Filigiivy, i) = — > cilivi, v € HE, o(Q).
= =il

Consider now a finite, arbitrary set of functions
v' € Hi, (%), 1<r<R

Then we must have

L L
e radp PIE |} il
E ki (ux,;vxy,- + uy,;vy’,-) = E G, V1<r<R.
i=1 =1y
AT 2855, o o it
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Discretization

By defining

L
are = Oxevyg+Oyevy, and f, = —E Gioivi,1<(<L 1<r<R,
i=1 §

N\

we end up witlﬁ!’ . ‘ P
’ L w’ i} arekf - ﬂ, \Y/l ﬁ_ﬁr’%" l', I

f R X A B it N - P "‘m&l

| AK=F, (+%) ﬁ LF ik
e R’ and F € RR. _—

) Ruben D Inverse diffusicn problems .
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An inverse heat conduction problem The inverse problem

Discretization

By defining

L
are = Oxevyp+lyevy, and f, = — E Gioivi,1<{<L 1<r<R,
i=1

we end up with

L
D auke =f,  VISr<R,
£=1

or simply

AK=F, ()
where A € RF*L K ¢ RL and F € RR.

Still need to impose the ‘condition that all components of the vector K be
bounded between the values 1 and 5.
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An inverse heat conduction problem

Discretization

Idea: solve (xx) in the least squares sense, weakly imposing this restriction
through a penalizer

III (r L At
; 4 A ST o i
. pal L Y du-w.... Hz N
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An inverse heat conduction problem The inverse problem

Discretization

Idea: solve (xx) in the least squares sense, weakly imposing this restriction
through a penalizer
Jaw(K) = [|AK = F|* + a W(K),

where a > 0, and W(K) must be designed so as to deter non-admissible values as
well as any undesired property of the conductivity profile k(x, y).
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An inverse heat conduction problem The inverse problem

Discretization

Idea: solve (xx) in the least squares sense, weakly imposing this restriction

through a penalizer

Jaw(K) = ||AK — F|]? + a W(K),

where @ > 0, and W(K) must be designed so as to deter non-admissible values as
well as any undesired property of the conductivity profile k(x, y).

Assumptions and numerical implementation:

y

4 I Vu.ii =0

div(kVu) + cu= 0

u =4 Q,

L
u="Ty

0 Lo Wui=0

Ruben D. Spies (IMAL-FIQ, UNL-CONICET)
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An inverse heat conduction problem The inverse problem

Discretization

Idea: solve (xx) in the least squares sense, weakly imposing this restriction

through a penalizer

Jaw(K) = ||AK — F|]? + a W(K),

where @ > 0, and W(K) must be designed so as to deter non-admissible values as
well as any undesired property of the conductivity profile k(x, y).

Assumptions and numerical implementation:

y

I L Vui=0
div(kVu) + cu=0
L — L
w= Ty 0 ey
0 Lo Wui=0 1

Ruben D. Spies (IMAL-FIQ, UNL-CONICET)

T1 > T and assume k(x,y) can
take only two possible values, say
ki and ky, with 0 < k; < ky <
oo (only two different materials
are present in ).

LACIAM 2023, Rio de Janeiro
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An inverse heat conduction problem Regularization: finding the right penalizers

On the penalizers W(K)

At each point (x,y) € Q, k(x, y) can only take one of the values k; or ky. Then
W(K) must be designed so that it deters each and every component of the vector
K to take any but one of those two values.
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An inverse heat conduction problem Regularization: finding the right penalizers

On the penalizers W(K)

At each point (x,y) € Q, k(x, y) can only take one of the values k; or ky. Then
W(K) must be designed so that it deters each and every component of the vector
K to take any but one of those two values. ldeas ?:
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On the penalizers W(K)

At each point (x,y) € Q, k(x, y) can only take one of the values k; or ky. Then
W(K) must be designed so that it deters each and every component of the vector
K to take any but one of those two values. ldeas ?:

Option 1: Let p: R = R, p(z) = (z — k. )(z — kuy) = z% — (k. + ku)z + kiky
and define Wy : Rt — R{ as

Wi(K) = [lp(K)l[ze:
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On the penalizers W(K)

At each point (x,y) € Q, k(x,y) can only take one of the values k. or ky. Then
W(K) must be designed so that it deters each and every component of the vector
K to take any but one of those two values. ldeas ?:

Option 1: Let p: R = R, p(z) = (z — k. )(z — kuy) = z% — (k. + ku)z + kiky
and define Wy : Rt — R{ as

Wi(K) = [lp(K)l[ze:

Option 2: Add data-driven information about where to take one or the other
value. Let b € R binary, b; = 1iif |[Vid(x;, yi)|| > 7, 7 is a given threshold value,

Wa(K) = ||by ® (K — k. 1)]|2.

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) LACIAM 2023, Rio de Janeiro 27 /42


Ruben
Highlight

Ruben
Highlight

Ruben
Highlight


Evamples and numerical experiments
Examples and numerical experiments
Case I: We first solved P with T; = 322 [K], T> = 283 [K], c(x,y) = 1 =const., and k(x, y) as

shown (used a standard discretization by FEM, with biquadratic interpolation elements S2 with
8-nodes for computing d(x, y), dx(x,y) and dy(x,y))

10

)
I 500 k)

Conductivity k(x, y) used for solving the forward problem in Case |
N
-0 k, = 300 K/(W)
i te ‘ AL L
|

_ /

i

20 = 10
ok, = 1.0 K/(Wom)

a) )
a) Sketch of the distretized domain used to solve the forward problem, for case |. The finite element mesh S2 used is regular with elements size
h = 1/200. b) Temperature distribution i(x, y)

Ruben D. Spies (IMAI
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An inverse heat conduction problem

Case |

Setting 1: Picked a = 0 (non-penalized case) and v’ € H}DYO(Q), 1 < r < R given by

A,

g ot ™ 1|
Ruben D. Spies (IMAL-FIQ, UNL-CONICE Inverse diffusion problems


Ruben
Oval

Ruben
Highlight


An inverse heat conduction problem Examples and numerical experiments

Case |

Setting 1: Picked o = 0 (non-penalized case) and v/ € HllD’O(Q)7 1 < r < R given by

v (x,y) = xT(1—x)", for1<m,n< M,

Severe ill-posedness:(Cond(A) =~ 2,5 x 10'8.

K (conductivity)

|

I
o
’. “‘ ‘o""“‘
i j@‘
s
\‘t'\‘"a"‘";"

Reconstruction of k(x, y) obtained using a non-penalized least squares approach:
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An inverse heat conduction problem

Setting 2: Take a > 0 and W(K) = Wi(K)

Ruben D. Spies (IMAL-FIQ, UNL- CON\CET)‘ Inverse diffusion problems .



An inverse heat conduction problem Examples and numerical experiments

Case |

Setting 2: Take a > 0 and W(K) = Wi (K)

K (conductivity)

Reconstruction of k(x,y) obtained using W(K) = Wi(K)

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro
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An inverse heat conduction problem

Setting 3: Take a > 0 and W(K) = Wx(K)
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An inverse heat conduction problem Examples and numerical experiments

Case |

Setting 3: Take o > 0 and W(K) = Wx(K)

K (conductivity)

s~ .
0.5 i

B -0 V/Km)
N 300 /i K.m)

Reconstruction of k(x,y) obtained using W(K) = W5(K), Case I.
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An inverse heat conduction problem Examples and numerical experiments

Case |l

Conductivity profile shown below; T; = 318,15 [K], T = 288,15 [K], c(x,y) = 1 = constant.

00! X
o5 110

W 50 VKm)
| W)

Distributed values of the conductivity k(x, y) used for solving the forward problem in Case Il

a0 k=75 KI(Wm)

[FEAN ‘”
k. = 5.0 Ki(ii)

a) Sketch of the distretized domain used to solve the frward problem for Case II. The finite elertient mesh S2 used is regular with elements size
h = 1/200. b) Temperature distribution d(x, y) for k(x, y) for Case Il.
Ruben D. Spies (IMAL-FI ONICET)
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An inverse heat conduction problem

Setting 3: Take a > 0 and W(K) = Ws(K)
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An inverse heat conduction problem Examples and numerical experiments

Case |l

Setting 3: Take o > 0 and W(K) = Wa(K)

k (conductivity)

0.5

0.0 -
1 05 100
- k,=5.0 W/(K.m)
e | e

Reconstruction of k(x, y) obtained using W(K) = Ws(K), Case Il
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An inverse heat con ion problem Examples and numerical experiments

Conductivity profile shown below; T; = 373,15 [K], T = 353,15 [K], c(x,y) = 1,0 = constant,
ky = 100 and k; = 0,7.

W00 Km)
I 100 k)

Distributed values of the conductivity k(x, y) used for solving the forward problem in Case Il

k, =100 K/(Wom)

o5 T o

ok, = 070 K/(Wom)

a) Sketch of the distretized domain used to solve the fg)rward problem for Case Ill. The finite ele%ent mesh S2 used is regular with elements size
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An inverse heat conduction problem

Setting 3: Take a > 0 and W(K) = Wi(K)
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An inverse heat conduction problem Examples and numerical experiments

Setting 3: Take a > 0 and W(K) = Ws(K)

0.5

0.5

B - —0.70 W/(K.m).
-0k

1.0

Reconstruction of k(x, y) obtained using W(K) = W5(K), Case Il

Ruben D. Spies (IMAL-FIQ, CONICET) LACIAM 2023, Rio de Janeiro
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An inverse heat con ion problem Examples and numerical experiments

Case IV

Conductivity profile shown below; T; = 308,15 [K], T> = 298,15 [K], c(x,y) = 1,0 = constant,
kU = 125 and kL = 200

X,
05 1o

W 200K
I 125 wikm)

Distributed, values of the conductivity k(x, y) used for solving the forward problem in Case IV
) k, =125 K/(Wom)
o0 i /

Temp. K

208I5K

Neki= 20K
a) b)

a) Sketch of the distretized domain used to solve the forward problem for Case IV. The finite element mesh S2 used is regular with elements size
h = 1/200. b) Temperature distribution i(x, y) for k(x, y) for Case IV.
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An inverse heat conduction problem

Setting 3: Take a > 0 and W(K) = Wx(K)
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An inverse heat conduction problem Examples and numerical experiments

Setting 3: Take o > 0 and W(K) = Wx(K)

1.0-

8

K (conductivity)

0.5

0.5

- o B <20 W/(K.m)
oo " I 25 k)

1.0

Reconstruction of k(x,y) obtained using W(K).= Wx(K), Case IV
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Open problems:

There are many open problems:
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An inverse heat conduction problem

Open problems:

There are many open problems:

@ The case of n materials
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Open problems:

There are many open problems:

@ The case of n materials

o Efficient ways to estimate the threshold parameter v. For n materials there
are n — 1 threshold parameters.
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Open problems:

There are many open problems:

@ The case of n materials

o Efficient ways to estimate the threshold parameter v. For n materials there
are n — 1 threshold parameters.

@ The case of desired and missing data: a proper thermal design problem (flux
inverter, flux concentrator, etc.)
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Open problems:

There are many open problems:

@ The case of n materials

o Efficient ways to estimate the threshold parameter v. For n materials there
are n — 1 threshold parameters.

@ The case of desired and missing data: a proper thermal design problem (flux
inverter, flux concentrator, etc.)

@ Use of thermal images to solve the inverse problem.
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Open problems:

There are many open problems:

@ The case of n materials

o Efficient ways to estimate the threshold parameter v. For n materials there
are n — 1 threshold parameters.

@ The case of desired and missing data: a proper thermal design problem (flux
inverter, flux concentrator, etc.)

@ Use of thermal images to solve the inverse problem.

o Calderdn problem: Estimate k only with information about u|sq.
This is the basis of the EIT
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Open problems:

There are many open problems:

@ The case of n materials

o Efficient ways to estimate the threshold parameter v. For n materials there
are n — 1 threshold parameters.

@ The case of desired and missing data: a proper thermal design problem (flux
inverter, flux concentrator, etc.)

@ Use of thermal images to solve the inverse problem.

o Calderdn problem: Estimate k only with information about u|sq.
This is the basis of the EIT

@ Many more...
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...and that s all...
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...and that’s all...

thanks for your attention!
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