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The inpainting problem

The inpainting problem

An inpainting problem consists of filling up the occluded regions of a damaged
image (missing data).

Example of an occluded image.

Notation
Ω ∈ R2 is the image domain.
D ⊂ Ω is the region missing data. (Red in the figure)
u : Ω → [0, 1] is the light intensity function.
v = u |Ω\D is the (possibly noisy) known part of u.
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The inpainting problem T1, TV and mixed weighted T1-TV inpainting

Tikhonov-Phillips Inpainting Method

The order 1 Tikhonov-Phillips inpainting is obtained by minimizing

J (u) = ∥T u − v∥2L2 + λ∥∇u∥2L2 , (T1I)

with respect to u.

T : L2(Ω) → L2(Ω \ D) is the occlusion operator, and λ > 0 is
a regularization parameter.

Occluded image. T1I inpainting. T1A inpainting.

To enhance edge preservation, add an anisotropy inducing matrix A to (T1I),

J (u) = ∥T u − v∥2L2 + λ∥A∇u∥2L2 . (T1A)
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The inpainting problem T1, TV and mixed weighted T1-TV inpainting

Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

J (u) = ∥T u − v∥2L2 + λ∥|∇u|∥L1 . (TVI)

Occluded image and TVI inpainting for
a thin occlusion.

Occluded image and TVI inpainting for
a wide occlusion.

Euler-Lagrange equation of (TVI) ⇒ inside the occlusion, the minimizer of (TVI)
is the steady state solution of ∂u

∂t
= ∇ ·

[
∇u

|∇u|

]
= ∇ · [D∇u] ,

where D = |∇u|−1.

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 5 / 42



The inpainting problem T1, TV and mixed weighted T1-TV inpainting

Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

J (u) = ∥T u − v∥2L2 + λ∥|∇u|∥L1 . (TVI)

Occluded image and TVI inpainting for
a thin occlusion.

Occluded image and TVI inpainting for
a wide occlusion.

Euler-Lagrange equation of (TVI) ⇒ inside the occlusion, the minimizer of (TVI)
is the steady state solution of ∂u

∂t
= ∇ ·

[
∇u

|∇u|

]
= ∇ · [D∇u] ,

where D = |∇u|−1.

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 5 / 42



The inpainting problem T1, TV and mixed weighted T1-TV inpainting

Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

J (u) = ∥T u − v∥2L2 + λ∥|∇u|∥L1 . (TVI)

Occluded image and TVI inpainting for
a thin occlusion.

Occluded image and TVI inpainting for
a wide occlusion.

Euler-Lagrange equation of (TVI) ⇒ inside the occlusion, the minimizer of (TVI)
is the steady state solution of ∂u

∂t
= ∇ ·

[
∇u

|∇u|

]
= ∇ · [D∇u] ,

where D = |∇u|−1.

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 5 / 42



The inpainting problem T1, TV and mixed weighted T1-TV inpainting

Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

J (u) = ∥T u − v∥2L2 + λ∥|∇u|∥L1 . (TVI)

Occluded image and TVI inpainting for
a thin occlusion.

Occluded image and TVI inpainting for
a wide occlusion.

Euler-Lagrange equation of (TVI) ⇒ inside the occlusion, the minimizer of (TVI)
is the steady state solution of ∂u

∂t
= ∇ ·

[
∇u

|∇u|

]
= ∇ · [D∇u] ,

where D = |∇u|−1.

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 5 / 42



The inpainting problem T1, TV and mixed weighted T1-TV inpainting

Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

J (u) = ∥T u − v∥2L2 + λ∥|∇u|∥L1 . (TVI)

Occluded image and TVI inpainting for
a thin occlusion.

Occluded image and TVI inpainting for
a wide occlusion.

Euler-Lagrange equation of (TVI) ⇒ inside the occlusion, the minimizer of (TVI)
is the steady state solution of ∂u

∂t
= ∇ ·

[
∇u

|∇u|

]
= ∇ · [D∇u] ,

where D = |∇u|−1.

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 5 / 42



The inpainting problem T1, TV and mixed weighted T1-TV inpainting

Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

J (u) = ∥T u − v∥2L2 + λ∥|∇u|∥L1 . (TVI)

Occluded image and TVI inpainting for
a thin occlusion.

Occluded image and TVI inpainting for
a wide occlusion.

Euler-Lagrange equation of (TVI) ⇒ inside the occlusion, the minimizer of (TVI)
is the steady state solution of ∂u

∂t
= ∇ ·

[
∇u

|∇u|

]
= ∇ · [D∇u] ,

where D = |∇u|−1.

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 5 / 42



The inpainting problem T1, TV and mixed weighted T1-TV inpainting

Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

J (u) = ∥T u − v∥2L2 + λ∥|∇u|∥L1 . (TVI)

Occluded image and TVI inpainting for
a thin occlusion.

Occluded image and TVI inpainting for
a wide occlusion.

Euler-Lagrange equation of (TVI) ⇒ inside the occlusion, the minimizer of (TVI)
is the steady state solution of ∂u

∂t
= ∇ ·

[
∇u

|∇u|

]
= ∇ · [D∇u] ,

where D = |∇u|−1.

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 5 / 42



The inpainting problem T1, TV and mixed weighted T1-TV inpainting

Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

J (u) = ∥T u − v∥2L2 + λ∥|∇u|∥L1 . (TVI)

Occluded image and TVI inpainting for
a thin occlusion.

Occluded image and TVI inpainting for
a wide occlusion.

Euler-Lagrange equation of (TVI) ⇒ inside the occlusion, the minimizer of (TVI)
is the steady state solution of ∂u

∂t
= ∇ ·

[
∇u

|∇u|

]

= ∇ · [D∇u] ,

where D = |∇u|−1.

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 5 / 42



The inpainting problem T1, TV and mixed weighted T1-TV inpainting

Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

J (u) = ∥T u − v∥2L2 + λ∥|∇u|∥L1 . (TVI)

Occluded image and TVI inpainting for
a thin occlusion.

Occluded image and TVI inpainting for
a wide occlusion.

Euler-Lagrange equation of (TVI) ⇒ inside the occlusion, the minimizer of (TVI)
is the steady state solution of ∂u

∂t
= ∇ ·

[
∇u

|∇u|

]
= ∇ · [D∇u] ,

where D = |∇u|−1.

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 5 / 42



The inpainting problem T1, TV and mixed weighted T1-TV inpainting

Total Variation Inpainting Method

The Total-Variation inpainting is obtained by minimizing

J (u) = ∥T u − v∥2L2 + λ∥|∇u|∥L1 . (TVI)

Occluded image and TVI inpainting for
a thin occlusion.

Occluded image and TVI inpainting for
a wide occlusion.

Euler-Lagrange equation of (TVI) ⇒ inside the occlusion, the minimizer of (TVI)
is the steady state solution of ∂u

∂t
= ∇ ·

[
∇u

|∇u|

]
= ∇ · [D∇u] ,

where D = |∇u|−1.
Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 5 / 42



The inpainting problem Curvature-driven diffusion inpainting

Curvature-Driven Diffusion Inpainting Method

κ: curvature of the level lines of u.

If D̂
.
= |κ|

|∇u| ,

∂u

∂t
= ∇ ·

[
D̂∇u

]
= ∇ ·

[
|κ|
|∇u|

∇u

]
. (CDD)

Occluded Image. Not a CDD steady state. CDD inpainting.

Desired inpainting qualities:

Good performance at smooth regions.

Edge preservation.

Object connectivity.
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The inpainting problem A two step CDD + T1-TV inpainting method

Mixed Weighted Regularization Inpainting

J (u) = ∥T u − v∥2L2 + λT1∥|
√
1− θA∇u|∥2L2 + λTV ∥|θA∇u|∥L1 . (T1A-TVA)

θ : Ω → [0, 1] is a spatially varying weighting function.

Where θ ≈ 0, J (u) ≈ ∥T u − v∥2L2 + λT1∥|A∇u|∥2L2 . (T1A)

Where θ ≈ 1, J (u) ≈ ∥T u − v∥2L2 + λTV ∥|A∇u|∥L1 . (TVA)

(Mazzieri-Spies-Temperini, “Mixed spatially varying L2 − BV regularization of inverse
ill-posed problems”, Journal of Inverse and Ill-Posed Problems, 2015: 23(6):571-585.)

A new two-step inpainting method

v

CDD

inpainting

−→ u∗
p

Low-pass

filter

−→ up = G ∗ u∗
p−→

A = A(∇up)
θ = θ(∇up)

T1A-TVA

inpainting

−→ û
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The inpainting problem Numerical implementation and results

up construction

Some assumptions

Ω = [0, 1]× [0, 1].

U ∈ RMxM , u ∈ RM2

so that uM(l−1)+m = Um,l ∀l ,m.

CDD algorithm

1 Set u(0) ∈ RM2

, n = 0 and f
.
= ∇ ·

[
|κ|
|∇u|∇u

]
, where κ = ∇ ·

[
∇u
|∇u|

]
2 Compute a step of the Adams-Bashforth-Moulton predictor-corrector method:

ũ(n+1)
m = u(n)

m +
h

12

[
23f (u(n)

m )− 16f (u(n−1)
m ) + 5f (u(n−2)

m )
]
,

u(n+1)
m = u(n)

m +
h

12

[
5f (ũ(n+1)

m ) + 8f (u(n)
m )− f (u(n−1)

m )
]
.

3 If the stopping criterion is reached, u∗p = u(n+1). Else, set n = n + 1 and
repeat from Step 2.

Convolution up = G ∗ u∗p , where G is a low-variance Gaussian kernel.
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5f (ũ(n+1)

m ) + 8f (u(n)
m )− f (u(n−1)

m )
]
.

3 If the stopping criterion is reached, u∗p = u(n+1). Else, set n = n + 1 and
repeat from Step 2.

Convolution up = G ∗ u∗p , where G is a low-variance Gaussian kernel.

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 8 / 42



The inpainting problem Numerical implementation and results

up construction

Some assumptions

Ω = [0, 1]× [0, 1].

U ∈ RMxM , u ∈ RM2

so that uM(l−1)+m = Um,l ∀l ,m.

CDD algorithm

1 Set u(0) ∈ RM2

, n = 0 and f
.
= ∇ ·

[
|κ|
|∇u|∇u

]
, where κ = ∇ ·

[
∇u
|∇u|

]

2 Compute a step of the Adams-Bashforth-Moulton predictor-corrector method:
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ũ(n+1)
m = u(n)

m +
h

12

[
23f (u(n)

m )− 16f (u(n−1)
m ) + 5f (u(n−2)

m )
]
,

u(n+1)
m = u(n)

m +
h

12

[
5f (ũ(n+1)
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ũ(n+1)
m = u(n)

m +
h

12

[
23f (u(n)

m )− 16f (u(n−1)
m ) + 5f (u(n−2)

m )
]
,

u(n+1)
m = u(n)

m +
h

12

[
5f (ũ(n+1)
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The inpainting problem Numerical implementation and results

Anisotropy matrix field and weighting function

Anisotropy matrix field A

A(x , y) ∈ R2×2 is a symmetric positive definite matrix ∀(x , y) ∈ Ω, such that:

If ∇up(x , y) = 0, A(x , y) = I .

If ∇up(x , y) ̸= 0, A(x , y) has eigenvalues σj(x , y) and eigenvectors vj(x , y),
such that

v1(x , y) ⊥ ∇up(x , y), σ1(x , y) = 1

v2(x , y) ∥ ∇up(x , y), σ2(x , y) = h(|∇up(x , y)|)

The function h above is decreasing, with 0 < h(t) ≤ 1 ∀t ∈ R+.

A = I − (1− h(|∇up|))
[
∇up
|∇up|

] [
∇up
|∇up|

]T
.

Weighting function θ
We want θ ≈ 0 where |∇up| is small and θ ≈ 1 where |∇up| is large.

θ(x , y) =
|∇up(x , y)|

máx(x,y)∈Ω |∇up(x , y)|
. (1.1)
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máx(x,y)∈Ω |∇up(x , y)|
. (1.1)

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 9 / 42



The inpainting problem Numerical implementation and results

Anisotropy matrix field and weighting function

Anisotropy matrix field A
A(x , y) ∈ R2×2 is a symmetric positive definite matrix ∀(x , y) ∈ Ω, such that:

If ∇up(x , y) = 0, A(x , y) = I .

If ∇up(x , y) ̸= 0, A(x , y) has eigenvalues σj(x , y) and eigenvectors vj(x , y),
such that

v1(x , y) ⊥ ∇up(x , y), σ1(x , y) = 1

v2(x , y) ∥ ∇up(x , y), σ2(x , y) = h(|∇up(x , y)|)

The function h above is decreasing, with 0 < h(t) ≤ 1 ∀t ∈ R+.

A = I − (1− h(|∇up|))
[
∇up
|∇up|

] [
∇up
|∇up|

]T
.

Weighting function θ
We want θ ≈ 0 where |∇up| is small and θ ≈ 1 where |∇up| is large.

θ(x , y) =
|∇up(x , y)|
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The inpainting problem Numerical implementation and results

The two-step inpainting algorithm

Full algorithm

Find u∗p by solving
∂u

∂t
= ∇ ·

[ |κ|χD + χΩ\D

|∇u|
∇u

]
+

1

λ
(u − v)χΩ\D .

Convolve up = G ∗ u∗p , and compute A = A(∇up) and θ = θ(∇up).
Find the minimizer of

J (u) = ∥T u − v∥2L2 + λT1∥|
√
1− θA∇u|∥2L2 + λTV ∥|θA∇u|∥L1 .

Occluded Image. T1I inpainting. CDD inpainting. Two-step CDD +
T1A-TVA inpainting.

T1I CDD T1A-TVA
PSNR = 20 log10

(
M∥u0 − û∥−1

)
20.140 35.496 36.330
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The inpainting problem Numerical implementation and results

Diffusion methods in inpainting

Inpainting as an inverse problem: Total Variation + Curvature Driven Diffusion Method

Occluded Image.

Performance comparisons
Gaussian additive noise= 2%

T1I CDD T1A-TVA

PSNR 20.815 22.292 22.551

F. Ibarrola, R. Spies, “A two-step mixed inpainting method with

curvature-based anisotropy and spatial adaptivity´´, Inverse

Problems and Imaging, Volume 11, No. 2, 2017, pp 247-262,[7]

T1I inpainting. CDD inpainting. T1A-TVA inpainting.
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An inverse heat conduction problem Origins of the problem

Flux reversal (a way of violating Fourier’s law ?)

Numerical results ...
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An inverse heat conduction problem A brief historical mathematical tracking of the problem

A brief historical mathematical tracking of the problem

Problem: of determining the elliptic coefficient profile function in an elliptic
boundary value problem.

Applications: electrical conductivity problems, oil resevoir and ground water flow
problems ([3], [4], [8], [11], [17])

A. P. Calderón’s problem ([6], 1980, ATAS of SBM, Rio de Janeiro 1980):
Ω ⊂ Rn, n ≥ 2 bounded, ∂Ω Lipschitz, uφ ∈ H1(Ω) solution of the Dirichlet BVP{

∇.(k∇u) = 0, x ∈ Ω,

u = φ, x ∈ ∂Ω,

and

Qk(φ) =

∫
Ω

k(x) (∇uφ(x))
2 dx =

∫
∂Ω

φ(x)k(x)
∂uφ
∂ν

ds,
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An inverse heat conduction problem Calderón’s problem

Calderón’s problem:

Is k uniquely determined by Qk ?.

If so, try to compute k in terms of Qk

Calderón proved that:

M : k → Qk is bounded and analytic in L∞>0(Ω);

For the linearized problem the answer is affirmative: dM|k=const. is an
injective mapping;

If k ≈ const. then k is “nearly” determined by Qk .

✓Result extended and formalized by Sylvester and Uhlmann in 1986 ([15]) only for
n = 2.
✓Kohn and Vogelius, 1984 ([10]): k real analytic ⇒ it can be uniquely determined
from Qk . Extended to piecewise real analytic k in 1985 ([9]).
✓Sylvester and Uhlmann, 1987 ([16]): k sufficiently smooth ⇒ Qk uniquely
determines k. More precisely, they showed that the mapping M is injective over
C∞(Ω) ∩ L∞>0(Ω).
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An inverse heat conduction problem Inverting the conductivity-to-temperature mapping

Determining k from knowledge of u on the whole Ω

Assumptions on k and/or u are needed:

e.g. ∇u = 0 in ΩN ⊂ Ω, the k cannot be uniquely determined;

If |∇u| > 0 everywhere on Ω, once the values of k are given on a hypersurface
transversal to ∇u, the method of characteristics will yield a unique solution.

Several authors obtained similar uniqueness results under weaker assumptions
on ∇u under diverse assumptions on k (e.g. [1], [2], [5], [13]).

Problem of recovering k from information about u:

all works assume some degree of smoothness on k (at least differentiability);

never true in practical applications, where at best, only piecewise smoothness
and jump discontinuities are to be expected;

the available data may consist only of noisy measurements at some discrete
points.

Although the mathematical theory of elliptic equations with discontinuous
principal coefficients is well known ([14], [12]), there is not much done on the inverse
problem of recovering k in these cases.
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An inverse heat conduction problem Inverting the conductivity-to-temperature mapping

A regularized variational approach

Setting: Let Ω ⊂ Rn (n ≥ 2) a bounded open set with smooth boundary
Γ = ∂Ω = ΓD ∪ ΓN , with ΓD ∩ ΓN = ∅, c , k , f , g , h ∈ L2(Ω) with
0 < γ1 ≤ k(x) ≤ γ2 and c ≥ 0.
Problem:

P = P(k, c , f , g , h) :


−div(k(x)∇u(x)) + c(x)u(x) = f (x), x ∈ Ω, (a)

u(x) = g(x), x ∈ ΓD , (b)

k(x)∇u(x) · n⃗ = h(x), x ∈ ΓN . (c)

D

D

N

N

Schematic representation of problem P(k, c, f , g , h)
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An inverse heat conduction problem Inverting the conductivity-to-temperature mapping

Assume g ∈ C (ΓD) and define H1
ΓD ,g

(Ω)
.
=

{
v ∈ H1(Ω) : v |ΓD

= g
}
.

Multiplying (a) by v ∈ H1
ΓD ,0

(Ω) and integrating we obtain:

0 =

∫
Ω

(⟨k∇u,∇v⟩+ cuv) dx −
∫
Ω

fv dx −
∫
ΓN

hv ds

.
= F (u, v).

Variation formulation of P:

VF (P): Find u in H1
ΓD ,g

(Ω) such that F (u, v) = 0 for all v ∈ H1
ΓD ,0

(Ω), i.e.∫
Ω

(⟨k∇u,∇v⟩+ cuv) dx =

∫
Ω

fv dx +

∫
ΓN

hv ds, for all v ∈ H1
ΓD ,0(Ω).

Define Bk,c : H1(Ω)× H1(Ω) → R by

Bk,c(u, v)
.
=

∫
Ω

(⟨k∇u,∇v⟩+ cuv) dx .

Then Bk,c defines an inner product on H1(Ω) with associated norm

∥u∥2Bk,c

.
=

∫
Ω

(
k∥∇u∥2 + c |u|2

)
dx .
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An inverse heat conduction problem Inverting the conductivity-to-temperature mapping

Define also the energy functional J : H1
ΓD ,g

(Ω) → R by

J(v)
.
=

1

2
Bk,c(v , v)−

∫
Ω

fv dx −
∫
ΓN

hv ds

=
1

2

∫
Ω

(
⟨k∇v ,∇v⟩+ c v2

)
dx −

∫
Ω

fv dx −
∫
ΓN

hv ds.

Then

Lemma

For any u ∈ H1
ΓD ,g

(Ω) and any v ∈ H1
ΓD ,0

(Ω) there holds

d

dt
J(u + tv)|t=0 = F (u, v),

and finally

Theorem

Problem VF (P) does have a unique solution u∗ ∈ H1
ΓD ,g

(Ω), characterized by the
unique minimizer of the energy functional J, i.e.

u∗ = argmin u∈H1
ΓD ,g (Ω) J(u).
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An inverse heat conduction problem The inverse problem

The inverse problem

Given Ω, ΓD , ΓN , c , f , g and h, and a prescribed temperature distribution
û ∈ H1

ΓD ,g
(Ω) find the corresponding distributed conductivity field k(·) such that

u∗ = û. That is, “invert” problem P = P(k , c , f , g , h) with respect to k.

For simplicity n = 2, and f = h ≡ 0. Thus given û(x , y) ∈ H1
ΓD ,g

(Ω) we want to
find k = k(x , y) such that û be the unique solution of problem P(k, c , f , g , h).
Then k(x , y) must satisfy:

0 =
d

dt
J(û + tv)|t=0

=

∫
Ω

(⟨k∇û,∇v⟩+ cûv) dx dy , ∀v ∈ H1
ΓD ,0(Ω).

︸ ︷︷ ︸
The optimality equation
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An inverse heat conduction problem The inverse problem

Discretization

Let Ωi , 1 ≤ i ≤ L, be a partition of Ω by open sets. For each i let (xi , yi ) ∈ Ωi

and for any function q(x , y) defined on Ω let us denote with qi the value of q at
the point (xi , yi ), i.e. qi

.
= q(xi , yi ). The optimality equation reads:

0 =
L∑

i=1

[ki (ûx,ivx,i + ûy ,ivy ,i ) + ci ûivi ] m(Ωi ), ∀v ∈ H1
ΓD ,0(Ω),

or, assuming a regular partition so that m(Ωi ) is constant

L∑
i=1

ki (ûx,ivx,i + ûy ,ivy ,i ) = −
L∑

i=1

ci ûivi , ∀v ∈ H1
ΓD ,0(Ω).

Consider now a finite, arbitrary set of functions

v r ∈ H1
ΓD ,0(Ω), 1 ≤ r ≤ R.

Then we must have
L∑

i=1

ki
(
ûx,iv

r
x,i + ûy ,iv

r
y ,i

)
= −

L∑
i=1

ci ûiv
r
i , ∀ 1 ≤ r ≤ R.
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ci ûivi , ∀v ∈ H1
ΓD ,0(Ω).

Consider now a finite, arbitrary set of functions

v r ∈ H1
ΓD ,0(Ω), 1 ≤ r ≤ R.

Then we must have
L∑

i=1

ki
(
ûx,iv

r
x,i + ûy ,iv
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An inverse heat conduction problem The inverse problem

Discretization

By defining

arℓ
.
= ûx,ℓ v

r
x,ℓ + ûy ,ℓ v

r
y ,ℓ and fr

.
= −

L∑
i=1

ci ûi v
r
i , 1 ≤ ℓ ≤ L, 1 ≤ r ≤ R,

we end up with
L∑

ℓ=1

arℓkℓ = fr , ∀ 1 ≤ r ≤ R,

or simply
AK = F , (∗∗)

where A ∈ RR×L, K ∈ RL and F ∈ RR .

Still need to impose the condition that all components of the vector K be
bounded between the values γ1 and γ2.
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An inverse heat conduction problem The inverse problem

Discretization

Idea: solve (∗∗) in the least squares sense, weakly imposing this restriction
through a penalizer

Jα,W (K )
.
= ∥AK − F∥2 + αW (K ),

where α > 0, and W (K ) must be designed so as to deter non-admissible values as
well as any undesired property of the conductivity profile k(x , y).

Assumptions and numerical implementation:
y

1

0 1 xN

N

DD

T1 > T2 and assume k(x , y) can
take only two possible values, say
kL and kU , with 0 < kL < kU <
∞ (only two different materials
are present in Ω).
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An inverse heat conduction problem Regularization: finding the right penalizers

On the penalizers W(K)

At each point (x , y) ∈ Ω, k(x , y) can only take one of the values kL or kU . Then
W (K ) must be designed so that it deters each and every component of the vector
K to take any but one of those two values.

Ideas ?:

Option 1: Let p : R → R, p(z) .
= (z − kL)(z − kU) = z2 − (kL + kU)z + kLkU

and define W1 : RL → R+
0 as

W1(K )
.
= ∥p(K )∥2RL .

Option 2: Add data-driven information about where to take one or the other
value. Let b ∈ RL binary, bi = 1 iif ∥∇û(xi , yi )∥ > γ, γ is a given threshold value,

W2(K )
.
= ∥bU ⊙ (K − kL 1)∥2.
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An inverse heat conduction problem Examples and numerical experiments

Examples and numerical experiments

Case I: We first solved P with T1 = 322 [K ], T2 = 283 [K ], c(x , y) = 1 = const., and k(x , y) as
shown (used a standard discretization by FEM, with biquadratic interpolation elements S2 with
8-nodes for computing û(x , y), ûx (x , y) and ûy (x , y))

k =1.0 W/(K.m)L 

k =300 W/(K.m)U

1.0

Y

1.0

X

0.5

0.5
0.0

Conductivity k(x, y) used for solving the forward problem in Case I

1.0

1.00.0

h

u 
=

 T
 =

 3
22

 K
1

u 
=

 T
 =

 2
83

 K
2

q=0

q=0

k  = 300 K/(W.m)U

Temp. - K

k  = 1.0 K/(W.m)L

S2

a) b)
a) Sketch of the distretized domain used to solve the forward problem, for case I. The finite element mesh S2 used is regular with elements size
h = 1/200. b) Temperature distribution û(x, y)
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An inverse heat conduction problem Examples and numerical experiments

Case I

Setting 1: Picked α = 0 (non-penalized case) and v r ∈ H1
ΓD ,0(Ω), 1 ≤ r ≤ R given by

vm,n(x , y)
.
= xm(1− x)n, for 1 ≤ m, n ≤ M,

Severe ill-posedness: Cond(A) ≈ 2,5× 1018.

Reconstruction of k(x , y) obtained using a non-penalized least squares approach.
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An inverse heat conduction problem Examples and numerical experiments

Case I

Setting 2: Take α > 0 and W (K) = W1(K)

1.0

Y

1.0

X

0.5

0.5
0.0

Reconstruction of k(x , y) obtained using W (K) = W1(K)
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An inverse heat conduction problem Examples and numerical experiments

Case I

Setting 2: Take α > 0 and W (K) = W1(K)
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X
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An inverse heat conduction problem Examples and numerical experiments

Case I

Setting 3: Take α > 0 and W (K) = W2(K)

k =1.0 W/(K.m)L 

k =300 W/(K.m)U

1.0

Y

1.0

X

0.5

0.5
0.0

Reconstruction of k(x , y) obtained using W (K) = W2(K), Case I.
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Case I

Setting 3: Take α > 0 and W (K) = W2(K)

k =1.0 W/(K.m)L 

k =300 W/(K.m)U

1.0

Y

1.0

X

0.5

0.5
0.0

Reconstruction of k(x , y) obtained using W (K) = W2(K), Case I.
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An inverse heat conduction problem Examples and numerical experiments

Case II

Conductivity profile shown below; T1 = 318,15 [K ], T2 = 288,15 [K ], c(x , y) = 1 = constant.

k =5.0 W/(K.m)L 

k =75 W/(K.m)U

1.0

Y

1.0

X

0.5

0.5
0.0

Distributed values of the conductivity k(x, y) used for solving the forward problem in Case II

1.0

1.00.0

u 
=

 T
 =

 3
18

.5
 K

1

u 
=

 T
 =

 2
88

.1
5 

K
2

q=0

q=0 k  = 75 K/(W.m)U

Temp. - K

k  = 5.0 K/(W.m)L

S2

a) b)

h

a) Sketch of the distretized domain used to solve the forward problem for Case II. The finite element mesh S2 used is regular with elements size

h = 1/200. b) Temperature distribution û(x, y) for k(x, y) for Case II.
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An inverse heat conduction problem Examples and numerical experiments

Case II

Setting 3: Take α > 0 and W (K) = W2(K)

k =5.0 W/(K.m)L 

k =75 W/(K.m)U

1.0

Y

1.0

X

0.5

0.5
0.0

Reconstruction of k(x , y) obtained using W (K) = W2(K), Case II
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An inverse heat conduction problem Examples and numerical experiments

Case III

Conductivity profile shown below; T1 = 373,15 [K ], T2 = 353,15 [K ], c(x , y) = 1,0 = constant,

kU = 100 and kL = 0,7.

k =0.70W/(K.m)L 

k =100 W/(K.m)U

1.0

Y

1.0

X

0.5

0.5
0.0

Distributed values of the conductivity k(x, y) used for solving the forward problem in Case III
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u 
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 T
 =

 3
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.1
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1

u 
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K
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q=0

q=0 k  =100 K/(W.m)U

Temp. - K

k  = 0.70 K/(W.m)L

S2

a) b)

h

a) Sketch of the distretized domain used to solve the forward problem for Case III. The finite element mesh S2 used is regular with elements size

h = 1/200. b) Temperature distribution û(x, y) for k(x, y) for Case III.Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 34 / 42



An inverse heat conduction problem Examples and numerical experiments

Case III

Setting 3: Take α > 0 and W (K) = W2(K)

k =0.70 W/(K.m)L 

k =100W/(K.m)U

1.0

Y

1.0

X

0.5

0.5
0.0

Reconstruction of k(x , y) obtained using W (K) = W2(K), Case III
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An inverse heat conduction problem Examples and numerical experiments

Case IV

Conductivity profile shown below; T1 = 308,15 [K ], T2 = 298,15 [K ], c(x , y) = 1,0 = constant,

kU = 125 and kL = 20.

k =20W/(K.m)L 

k =125 W/(K.m)U
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1.0

X

0.5

0.5
0.0

Distributed values of the conductivity k(x, y) used for solving the forward problem in Case IV
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a) b)

h

a) Sketch of the distretized domain used to solve the forward problem for Case IV. The finite element mesh S2 used is regular with elements size

h = 1/200. b) Temperature distribution û(x, y) for k(x, y) for Case IV.

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 36 / 42



An inverse heat conduction problem Examples and numerical experiments

Case IV

Setting 3: Take α > 0 and W (K) = W2(K)

k =20 W/(K.m)L 

k =125 W/(K.m)U

1.0

Y

1.0

X

0.5

0.5
0.0

Reconstruction of k(x , y) obtained using W (K) = W2(K), Case IV
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An inverse heat conduction problem Examples and numerical experiments

Case IV

Setting 3: Take α > 0 and W (K) = W2(K)

k =20 W/(K.m)L 

k =125 W/(K.m)U

1.0
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1.0

X

0.5

0.5
0.0

Reconstruction of k(x , y) obtained using W (K) = W2(K), Case IV
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An inverse heat conduction problem Open problems

Open problems:

There are many open problems:

The case of n materials

Efficient ways to estimate the threshold parameter γ. For n materials there
are n − 1 threshold parameters.

The case of desired and missing data: a proper thermal design problem (flux
inverter, flux concentrator, etc.)

Use of thermal images to solve the inverse problem.

Calderón problem: Estimate k only with information about u|∂Ω.
This is the basis of the EIT

Many more...
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Thanks

...and that´s all...

thanks for your attention!

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 39 / 42



Thanks

...and that´s all...

thanks for your attention!

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 39 / 42



Bibliography

Bibliography I

Giovanni Alessandrini.

On the identification of the leading coefficient of an elliptic equation.
Pubblicazioni dell’Istituto di analisi globale e applicazioni., 1984.

Giovanni Alessandrini.

An identification problem for an elliptic equation in two variables.
Annali di Matematica pura ed applicata, (145):265–295, 1986.

J. Bear.

Dynamics of Fluids in Porous Media.
American Elsevier, New York, 1972.

F. Bongiorno and V. Valente.

A method of characteristics for solving an underground water maps problem.
Pubblicazioni Istituto per le Applicazioni del Calcolo ”Mauro Picone”. III, 116, 1977.

F. Bongiorno and V. Valente.

A Method of Characteristics for Solving an Underground Water Maps Problem.
Pubblicazioni (Istituto per le applicazioni del calcolo ”Mauro Picone”). IAC, 1977.

Alberto P. Calderón.

On an inverse boundary value problem.
Computational & Applied Mathematics, 25:133 – 138, 00 2006.

Francisco J. Ibarrola and Ruben D. Spies.

A two-step mixed inpainting method with curvature-based anisotropy and spatial adaptivity.
Inverse Problems and Imaging, 11(2):247–262, 2017.

Ruben D. Spies (IMAL-FIQ, UNL-CONICET) Inverse diffusion problems LACIAM 2023, Rio de Janeiro 40 / 42



Bibliography

Bibliography II

Ian Knowles and Robert Wallace.

A variational solution for the aquifer transmissivity problem.
Inverse Problems, 12(6):953–963, dec 1996.

R. V. Kohn and M. Vogelius.

Determining conductivity by boundary measurements ii. interior results.
Communications on Pure and Applied Mathematics, 38(5):643–667, 1985.

Robert Kohn and Michael Vogelius.

Determining conductivity by boundary measurements.
Communications on Pure and Applied Mathematics, 37(3):289–298, 1984.

Robert V. Kohn and Bruce D. Lowe.

A variational method for parameter identification.
ESAIM: Mathematical Modelling and Numerical Analysis, 22(1):119–158, 1988.

Walter Littman, Guido Stampacchia, and Hans F Weinberger.

Regular points for elliptic equations with discontinuous coefficients.
Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 17(1-2):43–77, 1963.

Gerard R. Richter.

An inverse problem for the steady state diffusion equation.
SIAM Journal on Applied Mathematics, 41(2):210–221, 1981.

Guido Stampacchia.

Equations elliptiques du second ordre a coefficients discontinus.
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