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Feb 1 – memorable day

• The Netherlands were hit by one of the 
worst storms in history on Feb 1, 1953

• Dikes broke, large part of southern part 
of the country was flooded

• 1836 people died
• But because of the flooding, my father 

met my mother…..
• …..and hence I am standing here!
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ICIAM – International Council for 
Industrial and Applied Mathematics
• Very happy to be at the first edition of the LACIAM congress!
• Good to meet colleagues this way, on the regional level

• Conferences of ECMI (European Consortium of Mathematics for Industry) in 
Europe (ECMI 2023 in Wroclaw)

• Conferences of APCMfI (Asia Pacific Consortium of Mathematics for Industry) 
in Asia

• Conferences of ANZIAM (Australia and New Zealand Industrial and Applied 
Mathematics) in the Ocianic region

• ICIAM is the world-wide organization, with 54 member organisations of which 6 in LA
• Would be great to have more members from LA – you can discuss with Liliane Basso 

Barichello, ‘’Poti’’ or me
• Next congress in Tokyo (>4000 participants) – deadline MS is Feb 20
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• Some opening thoughts
• Artificial Intelligence, Machine Learning and Neural Networks
• Hybrid methods: combining CSE and AI methods
• Example 1: Dynamic neural networks
• Example 2: Geometric concepts and AI
• Conclusion
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SOME OPENING THOUGHTS

Real and Artificial Intelligence for Science and Engineering – Wil Schilders



A few years ago……..

…….I was thinking:

• Is numerical mathematics nearly finished?

• Do we see any new research directions, or is all research just an 
‘’epsilon improvement’’ of existing theories?

• Of course, much research was still carried out on interesting topics

• We worked on model order reduction, the solution of 
indefinite linear systems and mimetic methods, with some 
new ideas; nice research, but not revolutionary (probably 
more evolutionary)

• Also, new application areas required adaptation of existing 
methods, and sometimes entirely new techniques

• Computational Science and Engineering meant working in 
interdisciplinary teams for mathematicians, adding a new 
dimension
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But then…….

1. High Performance Computing started 
(again) to become important, and in fact 
inevitable due to the ending of Moore’s Law

• Numerical methods needed to be made 
parallelizable

Mathematics: key enabling technology for scientific machine learning7



But then…….

1. High Performance Computing started 
(again) to become important, and in fact 
inevitable due to the ending of Moore’s Law

• Numerical methods needed to be made 
parallelizable

• ICCG, for example, shows a very bad 
performance on current supercomputers
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But then…….
1. High Performance Computing started 

(again) to become important, and in fact 
inevitable due to the ending of Moore’s Law

• Numerical methods needed to be made 
parallelizable

• ICCG, for example, shows a very bad 
performance on current supercomputers

• Hence, for the solution of sparse linear systems, 
entirely new methods need to be developed
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REVOLUTIONARY NEW IDEAS NEEDED!



Mathematical method development for HPC
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• Mathematical method development 

must be distinguished from 

software and hardware

• Mathware researchers must 

engage in discussions with 

software and hardware colleagues 

to achieve optimal results

• Example: ease transformations 

between 16, 32 and 64 bit 

representations (using FPGA?)



But then…….

1. High Performance Computing started 
(again) to become important, and in fact 
inevitable due to the ending of Moore’s Law

2. Data Science emerged as a discipline, and 
quickly became part of the curriculum at 
universities
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But then…….

1. High Performance Computing started 
(again) to become important, and in fact 
inevitable due to the ending of Moore’s Law

2. Data Science emerged as a discipline, and 
quickly became part of the curriculum at 
universities

• It is an emerging discipline on the crossroads of 
multiple existing disciplines

• David Donohue (Stanford): ‘’50 years of Data 
Science’’
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But then…….

1. High Performance Computing started 
(again) to become important, and in fact 
inevitable due to the ending of Moore’s Law

2. Data Science emerged as a discipline, and 
quickly became part of the curriculum at 
universities

3. Artificial Intelligence became extremely 
popular, with techniques for deep learning, 
in combination with big data
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MANY NEW CHALLENGES AHEAD!



Quoting Karen Willcox (Oden, 
Texas)

‘’It is such an exciting time to be a 
computational scientist. The field is in 
the midst of a tremendous convergence 
of technologies that generate 
unprecedented system data and enable 
automation, algorithms that let users 
process massive amounts of data and 
run predictive simulations that drive key 
decisions, and the computing power that 
makes these algorithms feasible at scale 
for complex systems and in real-time or 
in situ settings.’’
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We will concentrate on the third 
topic: 

Combining methods from the fields 
of Computational Science and 
Engineering (CSE) and Artificial 
Intelligence (AI)
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ARTIFICIAL INTELLIGENCE, MACHINE LEARNING AND 
NEURAL NETWORKS

Real and Artificial Intelligence for Science and Engineering – Wil Schilders



Artificial Intelligence (AI)

• The origins of AI can be traced 
back to the desire to build thinking 
machines, or electronic brains.

• In 1958, Frank Rosenblatt created 
the first artificial neuron that could 
learn by iteratively strengthening 
the weights of the most relevant 
inputs and decreasing others to 
achieve a desired output. 
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Brain-inspired AI
• Computation in brains and the creation of intelligent 

systems have been studied in a symbiotic fashion for 
many decades.

• Europe has become a hotspot of brain-inspired 
computing research,  the progress being accelerated 
by the FET flagship ‘’Human Brain Project’’.
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• In technology roadmaps, brain-inspired computing is commonly seen as a 
future key enabler for AI on the edge.

• Researchers at INRIA have presented an interdisciplinary approach towards 
transferring neuroscientific findings to new models of AI. Quoting them: 
“Major algorithms from artificial intelligence (AI) lack higher cognitive 
functions such as problem solving and reasoning.’’



Machine Learning (ML)

• The discipline of machine learning is often conflated 
with the general field of AI, but machine learning 
specifically is concerned with the question of how to 
develop algorithms and program computers to 
automatically recognise complex patterns and make 
intelligent decisions based on data.

• It involves probability theory, logic, combinatorial 
optimization, statistics, reinforcement learning and 
control theory.

• Applications are ubiquitous, ranging from vision to 
language processing, forecasting, pattern recognition, 
games, data mining, expert systems and robotics.
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History of Machine Learning
• Arthur Samuels popularized the term 

‘’machine learning’’ in 1959; he built a 
checkers-playing program alongside 
efforts to understand the 
computational principles underlying 
human learning, in the developing field 
of neural networks.

• In the ‘90s, statistical AI emerged, 
formulating machine learning problems 
in terms of probability measures. 

• Since then, the emphasis has vacillated 
between statistical and probabilistic 
learning and progressively more 
competitive neural network 
approaches.
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Breakthrough in Machine Learning
• The breakthrough work by Krizhevsky, Sutskever & 

Hinton in 2012 has been a catalyst for AI research. 
They used a deep neural network trained 
exhaustively on GPUs.

• Similar advances were then quickly reported for 
speech recognition and later for machine 
translation and natural language processing.

• Companies like Google, Microsoft and Baidu 
established large machine learning groups.

• Since then, with the combination of big data and 
big computers, rapid advances have been 
reported, including the use of machine learning for 
self-driving cars, and consumer-grade real-time 
speech-to-speech translation.
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Real and Artificial Intelligence for Science and Engineering - the Magic of Mathematics
PAGE 
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Criticism is growing…

• The much-glorified deep learning approaches all rely on the availability 
of massive amounts of data, often needing millions of correctly labelled 
examples. 

• Many domains, however, including some important areas such as 
health care, will never have such massive labelled datasets. 

• Similarly, robots cannot be trained for millions of trials, simply because 
they wear out long before. 

• The question is thus how to learn more with less. Here, statistics and 
prior knowledge will likely play a big role. 
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Criticism is growing…

Mathematics: key enabling technology for scientific machine learning29

There are serious limitations to current methods, as 
well as to our understanding of the success of machine 
learning techniques such as deep neural networks.

Professor Robbert Dijkgraaf* compares machine 
learning with 16th century alchemy, based on an 
accumulation of tricks topped with a good shot of 
credulity rather than on a systematic analysis.

He also quotes Ali Rahimi, a well-known researcher at 
Google, who last year accused the subject artificial 
intelligence of magical thinking.

*: Former president of Dutch Royal Academy of Sciences, 

former director of Princeton Institute of Advanced Studies, 

since a few months our new minister for Science and Education



Criticism is growing…
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The New York Times [12] goes even further, claiming that today’s AI needs to do 
something completely different: 

• “We need to stop building computer systems that merely get better and better at 
detecting statistical patterns in data sets – often using an approach as deep 
learning – and start building computer systems that from the moment of their 
assembly innately grasp three basic concepts: time, space and causality. Today’s 
AI systems know surprisingly little about any of these concepts….. Few people 
working in AI are even trying to build such background assumptions into their 
machines.”



Criticism is growing…
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Wall Street Journal, August 4, 2021



Deep Neural Nets are shortsighted

ImageNet-trained CNNs are biased towards texture; increasing 

shape bias improves accuracy and robustness, Geirhos et al. 2019
32



Deep Neural Nets are shortsighted

Explaining and Harnessing Adversarial Examples, Goodfellow et al. 2014

Deep Nets are too sensitive to local information.

Why? Because convolution is a local operation.

=> Use Topology to capture global characteristic
33



They look similar locally,

but apparently different if  we zoom out
c.f. Manifolds are locally all Euclidean space and homology distinguishes the global topology of them.



Background

• DL achieves high performance but has some weakness

• TDA has succeeded in capturing data features that 

conventional techniques have missed

DL is good at

• Precise observation

• Memorising/imitating examples

• Processing huge data

• Accurate operation

Human is good at

• Rough estimation

• Panoramic view

• Discovering rules/invariance

from  a small number of  

examples

• Explaining the reason
Deep Learning

(DL)

Data-driven

local

Topological Data Analysis 

(TDA)

Maths-based

global



Conclusion on AI and machine learning
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There is a lot of work ahead for mathematicians in the areas of artificial intelligence, 
machine learning and artificial neural networks (ANN)

• Understanding why methods work or do not work

• Understand the actions of the neurons (new ones?)

• Understanding on what grounds AI systems take decisions

• In image recognition, use is made of the pixels; mathematics can provide much better methods

• How to select a good set of training data

• Using less data and prior knowledge

• Reducing the size and density of neural networks

• Predicting the topology of ANN

• ………



HYBRID METHODS: COMBINING CSE AND AI

Real and Artificial Intelligence for Science and Engineering – Wil Schilders



Using AI within CSE

• In recent years, researchers in the 
field of Computational Science and 
Engineering realized that they could 
benefit from AI methods.

• Much more accurate models and 
simulations, needed for example in 
the creation of Digital Twins, require 
much more detailed models and 
coupled simulations.

• Neural networks can be used for 
accurate models of parameters
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Going back in time: semiconductor device simulation
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• Every year new models are 
constructed for mobility (and 
recombination), based upon many 
simulations and measurements, 
then using physical insight and 
curve-fitting
• Engineers and phycisists

provided their neural networks
• Why not use artificial neural 

networks, based upon the 
abundantly available measurement 
and simulation data?



Problem in this context

• Mathematicians derived conditions that mobility models must satisfy
• Peter Markowich proved that a monotonicity condition, with respect to 

the quasi-Fermilevel gradients, must hold
• Once the engineers at Philips presented a model that did not satisfy 

this condition; simulations failed at some point. They then corrected 
the model, satisfying the mathematical constraint

• Obviously, models generated with neural networks should also satisfy 
the constraint

• How can we achieve this???
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Physics Informed Neural Networks (PINNs)
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(George Karniadakis, Brown University, USA)

I am not sure that 
loss functions are the 
way to go, it leads to 

many problems

I prefer methods 
where physical 

properties are hard-
coded into the 

network



Combining physics based and data-based science 
and engineering
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Richard Feynman: 
‘’People who wish to 

analyse nature 
without using 

mathematics must 
settle for a reduced 

understanding." 



USA is front runner
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Workshop Lorentz Center (Leiden), November 1-5, 2021

• ‘’Computational mathematics and machine 
learning’’

• Keynote speakers:
• George Karniadakis
• Weinan E
• Petros Koumoutsakos
• Carola Schönlieb
• Stéphanie Allasonnière
• Karen Willcox
• Stephan Wojtowytsch
• Paris Perdikaris
• Erik Bekkers
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Booklet presented during Lorentz workshop

Mathematics: key enabling technology for scientific machine learning46

https://platformwiskunde.nl/wp-
content/uploads/2021/11/Math_KET_SciML.pdf

https://platformwiskunde.nl/wp-content/uploads/2021/11/Math_KET_SciML.pdf
https://platformwiskunde.nl/wp-content/uploads/2021/11/Math_KET_SciML.pdf


NWO XL Project UNRAVEL
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Combining physics based and data-based science 
and engineering
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• We aim at using so-called 
mimetic methods, i.e. 
methods that preserve 
properties of the 
underlying system

• How to develop mimetic 
neural networks or mimetic 
machine learning methods 
is an open challenge

• Such methods may need 
(much) less data, i.e. also 
work in case of ‘’little data’’ 
rather than ‘’big data’’
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EXAMPLE 1: DYNAMIC NEURAL NETWORKS

Real and Artificial Intelligence for Science and Engineering – Wil Schilders



Neural networks are often static, and use the following neuron 
activation functions



For dynamic 
situations (ODE, 
PDE, DAE), often 
recurrent neural 

networks are 
suggested



At Philips 
Research, 
we 
developed 
truly 
dynamic 
neural 
networks



Dynamic neural networks

• We were able to show that there is a 1-1 relation to state space 
models of the form

• Using this relation, the topology of the network can be defined (using 
the MOESP algorithm):

• Number of hidden layers related to multiplicity of eigenvalues of A

• Number of neurons related to number of complex eigenvalues

• Real eigenvalue → neuron with 1st order ODE

• Complex eigenvalue(s) → neuron with 2nd order ODE

• Methodology involves SVD, QR, Bartels-Stewart algorithm, solving Sylvester equations
Mathematics: key enabling technology for scientific machine 

learning
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Mimetic numerical methods

Lecture 22

Dynamic neural network idea



Mimetic numerical methods

Lecture 22



Mimetic numerical methods

Lecture 22



Mimetic numerical methods

Lecture 22



Mimetic numerical methods

Lecture 22



Mimetic numerical methods

Lecture 22
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Potential of dynamic neural networks
• We were able to predict the topology of dynamic neural networks (# 

hidden layers, # neurons per layer) by establishing a 1-1 
correspondence with state space models

• This correspondence also opens up the way to methods for model 
order reduction of neural networks, translating MOR concepts for state 
space models

• We are currently also investigating ‘’pruning of neural networks’’, which 
is related to model order reduction

• Neuron action in these dynamic neural networks can be viewed as so-
called high pass or low pass filters in electronics, implying that we are 
using electronic concepts for the construction of the networks 
mimicking true behaviour
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EXAMPLE 2: GEOMETRIC CONCEPTS AND AI

Real and Artificial Intelligence for Science and Engineering – Wil Schilders



Applied Differential Geometry – Dep. of Mathematics and Computer Science

Equivariant Deep Learning via PDEs
Remco Duits (joint work with Bart Smets & Erik Bekkers & Jim Portegies)



Current image analysis methods fall short

Costly user-input to correct

2Mathematics: key enabling technology for scientific machine learning



Problem Solution

3

?!

PDE-based geometric learning

Original
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4

𝜃

New Dimensions
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Geometric Image Analysis

Limited performance
Limited scope
Hand-crafting
Geometric Interpretation by PDEs
Low computational load
Few parameters
Little training-data

High performance
Wide scope
Automatic
No geometric interpretation
High computational load
Too many parameters
Huge training-data

Deep Learning

Merge geometry and machine learning

5

Merge geometry and machine learning
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Geometric PDE-Based neural networks

Reduce neural network by 
employing symmetry

Learn geometry by PDEs to 
improve classification
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Equivariant Deep Learning via PDEs

• An exciting area of research, improving the performance of 
convolutional neural networks (CNN) with geometric concepts, leading 
to the so-called G-CNN networks

• Remco Duits has obtained a very prestigious NWO Vici grant (2.5 
MEuro) to carry out this research

• For more information: https://www.win.tue.nl/~rduits/
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https://www.win.tue.nl/~rduits/


CONCLUSION

Real and Artificial Intelligence for Science and Engineering – Wil Schilders



Conclusion

• These are exciting times for researchers in the mathematical sciences, 
with the advent of high-performance computing, data science and 
artificial intelligence

• Combining ‘’traditional’’ methods in Computational Science and 
Engineering with methods from Artificial Intelligence, Machine Learning 
and Neural Networks is the way forward to increase accuracy of 
models, as required by e.g. Digital Twinning

• Using prior knowledge will be key to improve the performance of 
neural networks
• Increased accuracy, less data, more robustness
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Conclusion

• Expertise from numerical linear algebra and model order reduction can 
be used to ‘’prune’’ neural networks: reducing them in size, and 
improving the sparsity

• Mathematics may aid in predicting the topology of neural networks, 
avoiding the currently employed guesswork

• The mathematical sciences are indispensable in the new 
multidisciplinary field of scientific machine learning, combining model-
and data-based methods

Mathematics: key enabling technology for scientific machine learning74

Real intelligence is needed to 
make artificial intelligence work

(you may quote 
me on this)
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