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Notions of tensor rank
Matrix linear algebra provides powerful tools for organizing and handling data. Mathematical

refinements and algorithmic developments resting, for example, upon the Singular Value De-

composition (SVD), have benefited many areas, such as image processing, physics, biomedicine,

signal analysis, and neural networks, among others. As data structures become increasingly larger

and more complex, more degrees of freedom are required to handle and interpret the data, so the

study of multidimensional objects – the so-called tensors – became necessary. In this work, we

consider a tensor of order N , i.e., an array of N dimensions [1].

Parallel Factor Decomposition (PARAFAC)
The Parallel Factor Decomposition of a tensor X ∈ RI×J×K is the combination of R rank-1

components ilustrated in Figure 1:

Figure 1: PARAFAC representation of third order tensor [1, Fig 3.1].

The vectors ar ∈ RI, br ∈ RJ and cr ∈ RK(r = 1, ..., R), are the columns of matrices

A ∈ RI×R,B ∈ RJ×R and C ∈ RK×R. We define the tensorial rank as the number R. Given a

value that approximates the rank of X , the factors can be determined numerically via Alternated

Least Squares (ALS) [1].

High-Order Singular Value Decomposition (HOSVD)
The High Order SVD of a tensor X ∈ RI×J×K is ilustrated in Figure 2.

Figure 2: HOSVD representation of third order tensor [1, Fig 4.1].

We have A ∈ RI×P ,B ∈ RJ×Q, C ∈ RK×R and G ∈ RP×Q×R is the tensor core, which stores the

interactions between the modes of X . The vector (P,Q,R) is called multidimensional rank and

it is related to the ranks of the possible matricizations or unfoldings of X . Given a vector that ap-

proximates the multidimensional rank of X , the factors can be determined via SVD factorizations

from X unfoldings or via ALS as well.

Tensor Train Decomposition (TT)
The aforementioned decompositions suffer from serious drawbacks such as ill conditioning dur-

ing the factors computation process, in the case of PARAFAC, and exponential growth in the

number of parameters to represent the tensor, for the HOSVD. The Tensor Train (TT) decom-

position, together with the TT-rank [2], does not suffer from these drawbacks, as its number of

estimated parameters grows linearly with the dimensions.

We say X ∈ RI1×I2×···×IN is in the TT format if its entries are given by
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The third-order tensors G(k) ∈ Rrk−1×Ik×rk are the TT-cores, and the numbers rk are the TT-ranks,

for k = 0, ..., N . Note that, by definition, r0 = rN = 1.

The Completion Problem
The completion problem consists of recovering a set of data from a sample of its entries. It rests

upon tools that can capture both global and local information from the data structure, as well as

the possible correlations of the entries. In the matrix case, the rank is a powerful tool. However,

the notion of rank for high-order structures, e.g. a color image is not unique.

Let T be the original tensor and PΩ the orthogonal projection operator into the set of indexes Ω

which contain the known entries. The classic formulation is:

min
X

{rank(X ) | PΩ(X ) = PΩ(T )}. (2)

Problem (2) can be solved using convex optimization techniques. We addressed the formulation:

min f
(
G(1),G(2), ...,G(N)

)
=

1

2
||PΩ(T )− PΩ(X )||2F . (3)

where ||·||F is the Frobenius norm. Note that f is a smooth function on the TT-cores. The solution

is obtained by methods based on the steepest descent direction. In this case, the TT-rank plays an

important role, because it defines the dimension of the objective function to be minimized and,

hence, the computational cost. We have developed a scheme called Tensor Train Weighted Opti-

mization with Dynamical Updating (TT-WOPT-DU) of the TT-rank inspired by ideas from [4, 5].
Algorithm 1: TT-WOPT-DU
Data: TT-rank = [1, 1, ..., 1], rmax. Return: G(1), ...,G(N)

Initialize TT-cores G(1), ...,G(N).

for k = 2, ..., rmax do
for j = 1, ..., N − 1 do

if rj ≥ rmax then
Move to the next entry of TT-rank.

else
TT-rank = [r1, ..., rj + 1, ..., rN−1]

Update the TT-cores by increasing their dimensions but not changing the current representation and solve (3).

If the quality of the new approximation is not sufficient, reverse the step. Otherwise, accept the increment.
end

end
end

Results and Conclusions
Let us consider a colored image of dimensions 256 × 256 × 3. In Figure 3, we ex-

hibit the reconstruction of an image with the missing rate of 0.7, and entries are re-

moved uniformly without replacement. The solutions were obtained from an implemen-

tation of the methods SiLRTC and TMac-TT (see [3]) in Julia language available

in a Github repository (https://github.com/JoaoLuiz87/completamento dissertacao mestrado).

Figure 3: In sequence, we have (i) an image with 70% of missing entries; (ii) solution of (2) obtained by SiLRTC and based on the multi-
linear rank; (iii) solution of (2) obtained by TMac-TT and based on the TT-rank.

Let f : [0, 1]4 → R given by f (x) = exp(−||x||F ). We sample the function on a mesh of

204 = 160000 points and consider a 0.95 missing rate. This is a high-order problem and the

PARAFAC and HOSVD representations pose difficulties when computing its factors [3]. Hence,

we apply the method presented by Algorithm 1. By fixing the first two dimensions and tak-

ing slices from the corresponding tensor, it is possible to display the signal as in Figure 4.

Figure 4: In sequence, we have the contour plots (i) of the original signal; (ii) after 95% of the entries were removed ; (iii) of the recovered
signal. The dots in red represent the known entries.

Summing up, the method based on TT-rank formulation was able to successfully recover the mul-

tidimensional signal. Thus, tensor completion has proven to be an efficient way to reconstruct

data sets with missing inputs.
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