
Hyper-heuristics for the Time-dependent ATSP with Time Windows and 
Precedence Constraints applied to Air Travel

A traveler wants to visit N countries in N weeks, one country per week with some 
special restrictions:

- Time Window, i. e., some countries must be visited in a specific week;

- Precedence Constraint, i. e., there are pair of countries with a precedence relationship, 
where a country must be visited in the week immediately following the other.

The goal it to find a tour that minimizes the cost of flight between these countries. This 
problem can be modeled as a variant of the TSP. In this context, going from one vertex to 
the other in different weeks has an impact on the cost, generating a dependence on the 
time in which a given connection takes place. Furthermore, the existence of a connection 
from one country to another does not guarantee that the opposite occurs. So, this problem 
is summarized as a Time-dependent ATSP with time window and precedence constraint in 
the context of air travel.

- Thanaboon Saradatta and Pisut Pongchairerks. A time-dependent ATSP with time window and precedence constraints in air travel. Journal of Telecommunication, Electronic and Computer 
Engineering (JTEC), 9(2-3):149–153, 2017.

- Ahmed Kheiri and Edward Keedwell. Selection hyper-heuristics. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages 983–996, 2022
- Yaroslav Pylyavskyy, Ahmed Kheiri, and Leena Ahmed. A reinforcement learning hyper-heuristic for the optimisation of flight connections. In 2020 IEEE Congress on Evolutionary Computation (CEC), 

pages 1–8. IEEE, 2020
- Edmund K. Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender ̈Ozcan, and Rong Qu. Hyper-heuristics: a survey of the state of the art. pages 449–468, 2010.

Matheus Simões, Laura Bahiense and Celina Figueiredo
Federal University of Rio de Janeiro (UFRJ), Brazil

{simoesmc, laura, celina}@cos.ufrj.br

Motivation:

References:

Example of a tour with two precedence constraints where it is necessary to visit China 
immediately before USA, and South Korea immediately before Malaysia.

All methods were coded in C++ language and all experiments were executed on a 
personal computer with an i7-7500U 2.7 GHz Intel processor and 8 GB of RAM memory. 
Moreover, each method was executed 10 times aiming to get a wider view of its 
performance.

The problem and the dataset were introduced by Saradatta and Pongchairerks in 2017. 
They generated random initial solutions that were improved by two local search algorithms, 
using SWAP and INSERT heuristics respectively, and compared the result with a modified 
nearest neighbor algorithm to solve the Time-dependent ATSP with Time Windows and 
Precedence Constraints (TD-ATSP-TWPC). 

In this work, we implemented the local search algorithms used by Saradatta and 
Pongchairerks and embedded them into a hyper-heuristic framework, to show that the 
combined use of heuristics can produce better solutions than their use separately. A 
hyper-heuristic is a general-purpose problem-independent heuristic search framework 
which operates a set of low level heuristics to solve computationally hard problems, using 
only limited information such as the objective function and the direction of the optimization. 
In each iteration the hyper-heuristic selects a low level heuristic to be applied in the current 
solution. The new solution is tested in a move acceptance criterion, if approved, the 
solution becomes the new one and we proceed to the new iteration, otherwise, the new 
solution is discarded.

The set of low level heuristics was composed by the heuristics used by Saradatta and 
Pongchairerks in their local search algorithms:
- SWAP: it randomly selects two vertices in the solution and swaps them; and
- INSERT: it randomly selects a vertex and a position in the solution. Then the vertex is 

removed from the current position and inserted into the selected position. Consequently, 
all vertices between the old position and the new one are moved.

The heuristic selection methods applied within the hyper-heuristics were:
- Simple Random (SR): it uses a uniform probability distribution to randomly select a low 

level heuristic at each step;
- Random Descent (RD): it selects a low level heuristic randomly and applies it 

repeatedly as long as an improvement is found;
- Random Permutation (RP): it generates a random ordering of the low level heuristics 

and, at each step, successively applies a low-level heuristic in the provided order;
- Random Permutation Descent (RPD): it generates a random ordering of the low-level 

heuristics and applies each of them repeatedly as long as an improvement is found, 
respecting the provided order; and

- Reinforcement Learning (RL): it assigns an initial score to each low level heuristic in 
the beginning of the algorithm and adjusts the scores while learning through the 
iterations. When a low level heuristic improves a solution, its score is updated positively, 
while a worsening move decreases the score of a low level heuristic.

Finally, we used an adapted Improve or Equal deterministic acceptance criterion which 
only accepts two kinds of solutions - the ones with better or equal cost, or the ones with a 
slightly worse cost provided they have the same number of artificial edges. For a better 
comparison, the stopping criterion was based on reaching N*(N-1) iterations without 
improvement, as done in the local search.

The results depicted in Table 2 prove that the combined use of the low level heuristics in 
our hyper-heuristic framework was able to provide best results and better average solution 
costs for all instances compared to the local search algorithms used in Table 1. Regarding 
the high standard deviation values in Table 2, we observed that the results reproducing 
Saradatta and Pongchairerks experiments (Table 1) also include high values for the 
standard deviation. Moreover, our hyper-heuristic framework was able to produce a slight 
improvement, as shown by the average standard deviations 12.44 in Table 1 and 10.39 in 
Table 2. In conclusion, for solving the TD-ATSP-TWPC, we can affirm that combining low 
level heuristics within a hyper-heuristic framework leads to much better results.

We implemented the algorithms used by Saradatta and Pongchairerks and embedded 
them into a new hyper-heuristic framework to solve the Time-dependent Asymmetric 
Traveling Salesman Problem with Time Windows and Precedence Constraints, showing 
that the combined use of heuristics can produce better solutions than their use separately. 
We were able to find better results in all instances, both in terms of solution quality and 
computational time.

In our hyper-heuristic framework we used an adapted Improve or Equal deterministic 
acceptance criterion. Based on the evidences of meeting local minima, we suggest for 
future work the application of non-deterministic strategies, such as the Monte Carlo-based 
move acceptance strategies which accept all improving moves and some non-improving 
moves with a certain probability.

Methodology:

Hyper-heuristic diagram:

Results:

Conclusion and future work:


