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Abstract

Transport problems with highly forward-peaked scattering
can be difficult to solve numerically with standard iterative
methods such as source iteration (SI) or non-accelerated
generalize minimal residues method (GMRES). Acceler-
ation techniques such as diffusion synthetic acceleration
(DSA) and nonlinear diffusion acceleration (NDA) im-
prove the convergence but still quite inefficient. In this
work we propose the Fokker-Planck synthetic acceleration
(FPSA) technique that greatly outperform the preceding
techniques.

Introduction

Motivation: Usually highly charged particles have short
mean free paths and highly forward peaked scattering
cross sections. Witch means that in such systems, par-
ticles travel a very short path before experience a colli-
sion and the scattering collisions have a near singular dif-
ferential scattering cross section in the forward direction.
Such systems can be found in electrons transport. Plasma
physics, radiation shielding, X-ray machines design, astro-
physics etc are also related to the type of system describe
above [3].
The Transport Equation: The transport phenomena can
be describe by the Boltzmann transport equation and
solved for the transport flux ψ. In the present work we are
going to assume a mono-energetic, steady state, in slab
geometry transport equation

µ
∂ψ

∂x
(x, µ) + Σt(x)ψ(x, µ) =∫ 1

−1

Σs(µ, µ
′)ψ(x, µ ′)dµ ′ +Q(x, µ), (1)

with boundary conditionsψ(0, µ) = ψL(µ) for µ > 0,
ψ(X, µ) = ψR(µ) for µ < 0.

(2)

Where Q(x, µ) is the source function, ψ(x, µ) is the
transport flux about the x position with µ = cos (θ) and
θ is the angle between the x-axis and the flux direction
of travel. The scattering kernel, Σs(µ, µ ′), is going to be
chosen in a way suitable for highly forward peaked scat-
tering settings.
Background: Highly forward peaked scattering problems
are difficult to solve numerically for a number of rea-
sons. Solutions for the Boltzmann equation converge
slowly when using conventional methods such as source
iteration (SI) or generalize minimal residual method (GM-
RES). Standard acceleration methods such as diffusion
synthetic acceleration (DSA) and non-linear synthetic ac-
celeration (NDA) [2] are quite inefficient in accelerating
highly forward peaked problems due to not considering
higher order Legendre-moments. Higher order Legendre-
moments carry necessary information about the system
implying that we need a good low-order approximation for
the angular flux that can carry the higher order moments.
Fokker-Planck approximation can accelerate up to N mo-
ments in highly forward peaked settings, being a suitable
choice for the problem.

Problem Formulation

Operator form: We can write equation (1) in it operator
form as

Lψ = Sψ+Q, (3)
where L = µ ∂

∂x
+ Σt,

S =
∫1
−1(·)Σs(µ, µ

′)dµ ′.
(4)

Using the Gauss-Legendre quadrature for the integral term
in S and taking the sum up to L terms we get an approx-
imation for the S operator in equation (4) as

S ≈
L∑
l=0

2l+ 1

2
Σs,lPl(µ)ϕl(x), (5)

where Σs,l is the discretized scattering kernel that involves
the l order Legendre polynomial and

ϕl(x) =

∫ 1
−1

Pl(µ
′)ψ(x, µ ′)dµ ′, (6)

where ϕl(x) is the l order transport moment.
Source Iteration: We can attempt to solve the equation
(3) using the approximation in equation (5) for the op-
erator S by the source iteration (SI) method. The (SI)
method is derived from equation (3) as

Lψ(ℓ+1) = Sψ(ℓ) +Q. (7)
Usually we take ψ(0) = 0. The iteration is executed until
some criterion is reach. Source Iteration can be shown
to be very inefficient in highly forward peaked scattering
settings, so we need to introduce a acceleration technique
in such situation.
Synthetic Acceleration: Synthetic acceleration introduce
a second, correction, step to the (SI) scheme in (7). The
(SA) scheme is:

Predict: Lψ(ℓ+1
2
) = Sψ(ℓ) +Q, (8)

Correct: ψ(ℓ+1) = ψ(ℓ+1
2
) + P−1S

ψ(ℓ+1
2
) −ψ(ℓ)

 , (9)
where P ≈ (L − S) is any approximation for the trans-
port operator (L − S). Different P operators give rise to
different forms of synthetic acceleration.
Diffusion Synthetic Acceleration (DSA): The diffusion ap-
proximation for the transport equation is used as the P
operator in equation (9)

P =


−1

3(Σt − Σs,1)

d2

dx2
+ Σa



∫ 1
−1

(·)dµ. (10)

Fokker-Planck Synthetic Acceleration (FPSA): As the
mean scattering cosine angle, µ̄, approaches unity, in other
words, under the highly forward peaked condition, the S
operator in (6) approaches a simpler operator

S ≈ Σtr

2

∂

∂µ
(1− µ2)

∂

∂µ
, (11)

where
LFP =

∂

∂µ
(1− µ2)

∂

∂µ
(12)

is the Fokker-Planck operator or the discrete form of the
angular Laplacian operator. The P operator, in this case,
is

P =

µ
∂

∂x
+ Σa −

Σtr

2
LFP

 . (13)
The Fokker-Planck approximation for the transport oper-
ator greatly improve the convergence when compare to
(SI), (DSA) and non-accelerated (GMRES). This fact is
going to be evident when comparing the iterations count
and execution time.

Simulations
Fokker-Planck operator: Using discrete ordinates and the
LFP approximation for the S operator in equation (1) gives
us
µn
∂ψn(x)

∂x
+ ΣaΨn(x) =

Σtr

2
LFPψn(x) +Qn(x). (14)

We use a moment preserving discretization (MPD) that
preserves up to N moments of angular flux for discretizing
the LFP operator as

LFPψ = V−1LVψ, (15)

where Vi,j = Pi−1(µj)wj and Li,i = −i(i − 1), i, j =
1, ...,N.
Spatial discretization: We use a linear-discontinuous finite
element method to discretize the domain in contiguous
cells: (xLk, x

R
k), k = 1, ..., K. In each cell we can express

the angular flux as

ψk(x) = ψ
L
k


xRk − x

∆xk

 +ψ
R
k


x− xLk
∆xk

 , (16)

where ψLk = ψ(xLk) and ψRk = ψ(xRk). We sweep from
left to right and the other way around to find ψLk and ψRk
depending on the flux direction of travel as can be seeing
in Figure 1.

Figure 1: Spatial Discretized Scheme from [1].

Problem Set: Suppose a homogeneous slab with K = 200

spatial cells, slab width X = 400cm, Σa = 0, Σt = Σs,0,
L = 15 and N = 16. The problem has vacuum bound-
ary conditions and a isotropic source Q(x) = 0.5. We
use the screened Rutherford Kernel (SRK) best known for
modeling scattering behavior of electrons [2].

ΣSRKs,l = Σs

∫ 1
−1

Pl(µ)
η(η+ 1)

(1+ 2η− µ)2
dµ, (17)

as η goes to zero.

Table 1: Numerical results using (SRK) with η = 10−5

from [1].
Solver Runtime (s) Iterations
DSA 2380 53585

GMRES 143 2210
FPSA 1.21 26

FPSA-GMRES 0.589 11

Conclusions and Future Work
We have given a brief introduction to the problem with
highly forward peaked scattering settings and a general
overview for the classical methods to solve the trans-
port equation. We have successfully establish the (FPSA)
method and shown that it greatly outperform (Table 1)
the classical methods. In the future we want to simulate
problems with heterogeneous slab geometry and different
scattering kernels.
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