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Abstract

This is the first paper to analyze trading patterns in Bitcoin futures option con-
tracts traded on the Chicago Mercantile Exchange (CME) using Bitcoin options implied
volatility levels. Using two years of daily Bitcoin futures option prices ranging from
Jan 13th, 2020 to Dec 31st, 2021, we uncover strong evidence of market participants
using Bitcoin options to ‘play the Bitcoin lottery’. We find that the speculative demand
for Bitcoin call options increases with Bitcoin returns as indicated by the positive rela-
tionship between the ATM (at-the-money) call options’ implied volatility and Bitcoin
returns, in sharp contrast with what is observed in S&P 500 option contracts. This
lottery-like demand leads to a symmetric volatility smile and a positive term structure
for OTM (out-of-the-money) options. We also find that these dynamics cause call op-
tions to be more expensive than put options, particularly for longer-dated contracts,
indicating a higher demand for a relatively less expensive long position in the Bitcoin
cryptocurrency.

Keywords:
JEL: E31, G11, G12

∗Florida International University, College of Business, 11200 S.W. 8th St., RB 236, Miami, FL 33199,
USA. Phone: +1-305-348-5429. E-mail: dduarteg@fiu.edu

†Florida International University, College of Business, 11200 S.W. 8th St., RB 243, Miami, FL 33199,
USA. Phone: +1-305-348-3328. E-mail: dupoyetb@fiu.edu

‡Florida International University, College of Business, 11200 S.W. 8th St., RB 210, Miami, FL 33199,
USA. Phone: +1-305-348-9730. E-mail: anazim@fiu.edu

§Florida International University, College of Business, 11200 S.W. 8th St., RB 240B, Miami, FL 33199,
USA. Phone: +1-305-348-6964. E-mail: frouxelin@fiu.edu

mailto:dduarteg@fiu.edu
mailto:dupoyetb@fiu.edu
mailto:anazi008@fiu.edu@fiu.edu
mailto:frouxelin@fiu.edu


1 Introduction

The Chicago Mercantile Exchange (CME) launched futures contracts on the Bitcoin

cryptocurrency in 2017 and subsequently expanded its offering to include futures options

contracts in 2020 (Corbet et al. (2018)). Prior to this development, cryptocurrency options

trading had been limited to specialized cryptocurrency exchanges such as Deribit. The intro-

duction of options on the CME has brought these contracts within the reach of many more

traders, institutional and retail ones alike. In this paper we analyze the trading dynamics

of Bitcoin Futures Options on the CME in order to investigate whether market participants

behave differently in this arena relative to the more traditional S&P 500 options market. To

the best of our knowledge, no study has yet analyzed the trading patterns of CME-traded

Bitcoin options using their implied volatility levels. We aim to fill this gap by analyzing

Bitcoin futures options from January of 2020 to December of 2021 and comparing their dy-

namics against those of S&P 500 options. Out analysis takes a two-tier approach: first, we

focus on static comparisons between the two option contract types’ dynamics by using the

volatility smile, volatility surface, and risk-neutral moments. Then, we examine how the

dynamics of at-the-money (ATM) implied volatility and the implied volatility curve respond

to a variety of variables.

The most important finding of our analysis is the disparity in how market participants

use options in these two markets. In the S&P 500 equity options market, we conclude, in

line with past findings, that options are used primarily for hedging. In contrast, we find that

in the Bitcoin options market, participants use options as a less expensive way to play the

‘Bitcoin lottery’. The term ‘Bitcoin lottery’ refers to market participants using options to

bet that Bitcoin prices will rally. Three observations support our conclusions. First, when

we examine order volume, we find that the call volume greatly exceeds the put volume.

The put-to-call volume ratio for Bitcoin futures options during this period is close to 0.5
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whereas it is around 2 for S&P 500 options. This is despite the fact that the dynamics

of the underlying returns are similar in this period. Second, when we compare volatility

smiles, we find that S&P 500 options exhibit the well-known negative implied volatility skew

with out-of-the-money (OTM) puts displaying a higher implied volatility level than the rest

of the options, indicating a higher degree of risk aversion or fear of a crash. In contrast,

Bitcoin futures options display an almost symmetric smile indicating a much lower level of

risk aversion. Finally and most significantly is the contrasting relationship between ATM

implied volatility levels and returns. Using Bollen and Whaley (2004)’s methodology, we find

that ATM calls’ implied volatility levels have a positive relationship with Bitcoin returns.

This indicates that when Bitcoin prices are rising, investors demand more call options, a

result consistent with the lottery hypothesis. When we compare this result with that of S&P

500 options, we find that the S&P 500 index has a negative relationship with both ATM

calls and put options’ implied volatility, a result consistent with past findings. Black (1976)

attributed this phenomenon to a leverage effect, however other studies such as Hasanhodzic

and Lo (2011) have pointed to the risk aversion amongst participants being the culprit, while

Hibbert et al. (2008) conclude that this result is due to the feedback effect.

Our investigation also reveals that in addition to using Bitcoin call options to speculate,

market participants also appear to use these options to mimic holding Bitcoin in the long

term. Our analysis of the volatility surface reveals a positive term structure for OTM options.

Further examination shows that this effect is especially true for OTM call options. This result

appears to reflect an attempt by market participants to mimic holding Bitcoin at a fraction

of the cost. Similarly, using a methodology akin to Cremers and Weinbaum (2010), we

find that call options are more expensive than put options, a result more pronounced for

longer-dated options and deep-out-of-the-money (DOTM) call options.

Given this preference for call options amongst market participants, we also find that

the risk-neutral skewness of the returns distribution inferred from Bitcoin options is higher

than that obtained from S&P 500 index options, a result consistent with the said finding
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above. Positive skewness indicates a high frequency of small positive and negative returns

along with a few very large positive returns ("winning the lottery") and is thus consistent

with call options being in higher demand as a way to capitalize on the chance of a large

payoff. Conversely, negative skewness indicates a higher frequency of positive returns but a

few extremely large negative returns (inducing the fear of a crash) and is therefore consistent

with put options being in more demand than calls as a way to hedge the downside. Using

a method inspired by Bakshi and Madan (2000), Bakshi et al. (2003), and Bali and Murray

(2013), we find the overall risk-neutral skewness for Bitcoin options to be -0.1 and -0.3 for

the S&P 500 index, indicating a higher preference for call options in the Bitcoin market and

a higher preference for put options in the more traditional equity markets.

Another unique result we uncover is the contagion of fear between Bitcoin and equity

markets. In our analysis of ATM implied volatility, we find that the VIX volatility index

(sometimes referred to as the "fear gauge") has a positive relationship with ATM Bitcoin

futures put options’ implied volatility levels. This indicates that when fear - proxied for by

the VIX - increases in the equity market, Bitcoin put options’ implied volatility levels also

increase. This suggests a higher demand for downside protection, indicating that fear and

hedging activity can occur simultaneously in equity and Bitcoin markets

The limited prior work on Bitcoin options has usually focused on the Deribit Exchange, a

platform mostly used by cryptocurrency enthusiasts. Examples of such work include Zulfiqar

and Gulzar (2021) and Alexander et al. (2022). Additionally, the analysis of Bitcoin options

has mostly targeted pricing models and the underlying stochastic process as in Hou et al.

(2020), Pagnottoni (2019), or Cao and Celik (2021). Our paper is, to the best of our

knowledge, the first study using Bitcoin futures options traded on the CME and their implied

volatility levels to analyze their dynamics and trading patterns. The rest of the article is

structured as follows: section 2 provides a description of the data and its summary statistics,

section 3 describes the methodology and the various tests employed, section 4 reports the

results, and section 5 concludes.
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2 Data Sample and Summary Statistics

2.1 Data Description

Bitcoin Futures options data are obtained from the Chicago Mercantile Exchange (CME).

The sample spans from Jan 13th, 2020 (the first day Bitcoin futures options began trading)

to Dec 31st, 2021, providing about two years of daily prices. The dataset contains 8,033

option data points covering both put and call options of various strikes. The data purchased

from the CME contains implied volatilities and deltas computed for each option.

For each option, we calculate the moneyness as the futures price divided by the strike

price. As mentioned, the data from the CME include the delta of each option. Consistent

with the methodology of Bollen and Whaley (2004), we sort options into 5 groups based on

the delta of each option. A detailed description of the methodology used to sort options into

groups is provided in the next section. Consistent with past studies, we calculate Bitcoin

returns as the log difference between the Bitcoin futures price at time t and the price at time

t-1. The data collected for S&P 500 options come from OptionMetrics. Not surprisingly,

our S&P 500 dataset is significantly larger than our Bitcoin one, with a total of 8,475,999

records. Finally, we simply obtain VIX levels from Yahoo Finance.

2.2 Summary Statistics

We begin by reporting in Table 1 the summary statistics for the main variables used in our

analysis and tests. Part A describes the summary statistics for Bitcoin futures options, while

Part B pertains to the S&P 500 index options. The first column indicates the variable’s name,

and the remaining columns report the minimum, maximum, mean, median and standard

deviation of each variable.
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[Table 1 about here.]

The summary statistics for Bitcoin options indicate that the contracts display a fair

amount of range. The options deltas span from -1 for deep-in-the-money (DITM) put options

to 1 for deep-in-the-money (DITM) call options. Option deltas have a positive mean and

median value of 0.065 and 0.082 respectively, a reflection of the fact that there are more call

options in our data than put options. Option moneyness has a mean value of 1, indicating

a fairly even distribution around the at-the-money range. However, we find that there is

also a significant amount of variation in moneyness as indicated by a maximum value of 9.4

and a minimum value of 0.1. Bitcoin implied volatility has a mean value of 0.78, which as

expected, is significantly larger than that of the S&P 500 index (0.36). However, as with the

rest of the data, there is a significant amount of deviation from the mean with a minimum

value of 0.153 and a maximum value of 2.022. A look at the time to maturity reveals that

most of the options tend to be of the lower maturity kind, as indicated by a mean of 0.102

translating into about 37 days. However, some options exhibit much longer maturities, as

evidenced by a maximum value of over two years.

During the Jan 13th 2020 to Dec 31st 2021 period, Bitcoin experienced strong returns,

with a daily log mean return of 0.00275. However, it is important to note that the minimum

value of -0.25697 is greater in magnitude than the maximum of 0.20199. For comparison

purposes, Figures 1-3 illustrate the evolution of Bitcoin prices, S&P 500 levels, and their

returns over time.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

Part B of Table 1 reports summary statistics for S&P 500 options. As one would expect,

there are more data points in the S&P 500 options sample than in the Bitcoin one, with a
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total of 8,475,899 option records in the S&P 500 dataset. As with the Bitcoin dataset, there

is a good amount of spread or range in the variables. The option delta spans from -1 for

deep-in-the-money put (DITM) option to 1 for deep out-of-the-money (DOTM) call options.

The S&P 500 options’ moneyness also shows a wide range extending even further both deep

in-and-out-of-the-money compared to the moneyness of Bitcoin options. Implied volatility,

as expected, is much lower than that of Bitcoin options with a mean value of 0.36 and a

median of 0.29.

2.3 Implied Volatility Time Series Comparison

Figure 4 plots the average implied volatility of Bitcoin ATM call options over time.

Bitcoin implied volatility spikes at the beginning of 2020 and again at the beginning of

2021. The first spike of about 120% coincides with the onset of COVID fear in the markets

and coincides in timing with the one found in the S&P 500 (Figure 5). The second spike,

considerably larger than the first one at around 140%, happens when bitcoin prices start to

rise extremely rapidly. Although not a statistical test per say (those are conducted next), at

first glance this second spike at least appears to be consistent with the lottery-like demand

theory for bitcoin options in the sense that, when bitcoin prices are rallying quickly, market

participants are buying more call options hoping to participate in the upside.

Focusing now on S&P 500 call options ATM implied volatility instead, we see that there is

only one considerable spike in implied volatility, and it is when COVID fear was impacting

the markets the most, with volatility levels reaching 70%. After that, implied volatility

remains at more "normal" levels, between 20% to 30%, keeping in mind however, that these

levels are still significantly higher than the pre-COVID ones when implied volatility hovers

around 15%.

[Figure 4 about here.]

[Figure 5 about here.]
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3 Methodology

Our goal in this paper is to analyze the trading dynamics of Bitcoin futures options on

the Chicago Mercantile Exchange (CME) and to compare them with those of S&P 500 index

options. For this purpose, we take a two-tier approach. In a first step, we perform static

comparisons between the two by analyzing the volatility smile, volatility surface, and the

risk-neutral moments. In a second step, we compare the dynamics of ATM implied volatility,

the volatility slope, and the implied volatility spread.

3.1 Volatility Smile

We begin our analysis by computing the volatility smile for both Bitcoin futures options

and S&P 500 index options, first giving us an overall view of how the two compare. We

compute the volatility smile using the delta group methodology of Bollen and Whaley (2004).

The reason for using delta as opposed to the moneyness for the volatility smile is that

moneyness fails to account for the time to maturity. In line with the original methodology,

we classify options according to the delta group in which they fall, creating five delta groups

for both puts and calls. For example, options that have a delta between 0.375 (-0.375) and

0.625(-0.625) for calls (puts) are placed in delta group 3. We eliminate any options with

an absolute delta value greater than 0.98 and less than 0.02. Table 2 describes the full

classification of the options based on the delta methodology.

[Table 2 about here.]

After classifying the options into these five groups, we calculate the average implied

volatility of the options falling into each groups. We then plot the volatility smile as the

average implied volatility against the five delta groups. This implies that delta group 1 will

contain deep-in-the-money (DITM) calls and deep-out-of-the-money (DOTM) puts. Simi-
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larly, delta group 5 will contain DITM puts and DOTM calls. We additionally repeat this

procedure for calls and puts separately in order to later highlight any differences in demand

between these option groups.

3.2 Volatility Surface

We follow our preliminary volatility smile analysis by examining the volatility surface in

more detail, helping us further our comparison between Bitcoin options and S&P 500 options

by including a term structure component. There are several ways to build a volatility surface,

with Homescu (2011) highlighting different techniques and their respective advantages and

disadvantages, as well as when they can appropriately be used. Given the magnitude of the

number of observations, we deem the cubic spline technique to be the most fitting here.

Cont and Da Fonseca (2002) highlight how differences in implied volatilities on differ-

ent days caused by factors not related to moneyness or time to maturity can violate the

no-arbitrage condition. For this reason, only as an example, we first generate the volatility

surface using a cubic spline interpolation for a particular random day (August 2nd, 2021).

This allows us to depict the volatility surface without being affected by daily changes. How-

ever, a one-day snapshot does not give a complete picture of the volatility surface and we

must therefore also generate the volatility surface for the entire sample. For the whole pe-

riod, we thus use a variation of the cubic spline, the thin plate spline, and use moneyness

defined as the futures price divided by the strike price.

3.3 Risk Neutral Density

In this next portion of the analysis, we then examine the risk-neutral moments of the

returns’ distribution. The risk-neutral skewness and kurtosis measure the skewness and

kurtosis of the underlying asset’s risk-neutral probability distribution of returns implied

by the asset’s option prices. As previously mentioned, positive skewness indicates a high
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frequency of small positive and negative returns along with a few large positive returns

("winning the lottery") and is thus consistent with call options being in more demand as a

way to capitalize on the chance of a large payoff. Conversely, negative skewness indicates a

higher frequency of positive returns but a few large negative returns (inducing the fear of a

crash) and is thus consistent with put options being in more demand than calls as a way to

hedge the downside. We estimate the risk-neutral skewness and kurtosis using a combination

of the methods derived in Bakshi et al. (2003) and Bali and Murray (2013). Bakshi et al.

(2003) show that risk-neutral skewness can be calculated as

RNSskew = ert(W − 3uv) + 2u3

(ertV − u2)3/2 (1)

where

u = ert − 1 − (ert/2)V − (ert/6)W − (ert/24)X

We use the methodology of Bali and Murray (2013) to discretize the risk-neutral skewness.

Formally
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In the above equation, we use the variable name Futures somewhat loosely as both the
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closing price of the Bitcoin futures price and of the spot S&P 500 index level, so as not

to repeat the formulas twice. Kp
i is the strike of the ith OTM put option when strikes are

sorted in decreasing order. Put(KP
i ) is the price of a put option with strike Kp

i . We require

each option to have a minimum of two calls and two puts for a specific maturity. ∆Kp
i is

the difference in strike between two options of the same maturity. For the first option in the

series, ∆Kp
i is the difference between the strike and the futures price.

We similarly calculate the kurtosis of the returns distribution using the equation below:

RNkurtosis = ertX − 4uertW + 6ertu2V − 3u4

(ertV − u2)2 (2)

3.4 At-The-Money Implied Volatility

In the next section, we subsequently examine the dynamics of ATM options’ implied

volatilities. We apply the methodology of Bollen and Whaley (2004) and examine the deter-

minants of both calls and puts’ ATM implied volatilities separately, using the options’ deltas

to determine whether the options are at-the-money. As before, we classify all calls (puts)

options with a delta between 0.375 (-0.375) and 0.625 (-0.625) as at-the-money options, the

third delta group. We then calculate the average implied volatility for each day, and ex-

amine which factors influence ATM implied volatility, employing the following time-series

regression:

∆σt = α0 + α1R
BTC
t + βControlst + ϵ (3)

Our dependent variable is the change in ATM implied volatility, while the independent

variables are Bitcoin returns and various other independent variables: futures volume, nor-

malized call open interest, normalized put open interest, VIX, and lagged ATM implied
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volatility. The full form of this regression is similar in essence to Bollen and Whaley (2004).

However, due to data constraints, we use open interest instead of option volume as an in-

dicator of information flow. We also add the VIX in the original equation to analyze if

there is contagion between the S&P 500 and the Bitcoin market. We use various different

combinations of the independent variables to eliminate any data mining biases. We then

perform the above analysis for S&P 500 index options, naturally excluding the VIX from

the controls.

3.5 Dynamics of Calls and Puts Volatility Slopes

In this analysis, we examine the dynamics of the volatility slope. In previous studies, the

implied slope has been calculated in a variety of ways. However, the idea has always been to

examine how expensive out-of-the-money options are compared to at-the-money options and

what factors lead to changes in relative prices. As an example, Cremers et al. (2008) estimate

the implied volatility slope as the difference between the implied volatility of put options

with a strike-to-spot ratio of 0.92 and the implied volatility of ATM put options divided by

the difference in the strike-to-spot ratio. Duan and Wei (2009) use regressions to calculate

the slope of the implied volatility surface. We take advantage of the delta group we created

and calculate the volatility slope as the difference between the out-of-the-money options and

at-the-money options. For call options, this is the difference in implied volatility between

the fourth delta group and the third delta group. For put options, this is the difference

between the second delta group and the third delta group. After computing the put/call

volatility slope, we examine what causes this slope to change. Analyzing the slope allows us

to get some insight as to what causes the relative demand for options to be affected. For

this purpose, we run the following regression:
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∆V olatilitySlopet = α0 + α1R
BTC
t + α2∆VolatilitySlopet−1 + βVolumet + ϵ (4)

Our dependent variable is the change in the implied volatility slope, and our independent

variables are Bitcoin returns, the lagged change in implied volatility slope, and Bitcoin

futures volume. We additionally perform the same analysis for S&P 500 index options.

This analysis is important as the shape of the volatility slope has a lot of information

embedded in it. For example, Dennis and Mayhew (2000) finds that riskier stocks as indicated

by beta, as well as small-cap stocks, tend to have a steeper implied volatility slope. Similarly,

Yan (2011) finds that stock with the steepest implied volatility slope underperform stocks

with the least steep volatility slope.

3.6 Call and Put Options Implied Volatility Spreads

As a final step, we examine whether call options are generally more expensive than put

options, all else being constant. There could be a few reasons for differences in puts and

calls volatility smiles. First, due to the disparity in the trading of Bitcoin calls and puts

on different days, their differing volatility smiles could reflect a difference in the volume

on those days. Second, it is also possible some of the variations stem from end-of-day

transactions. Battalio and Schultz (2006) conclude that when intraday transactions are used,

the discrepancy between puts and calls implied volatility disappears. Nonetheless, since we

posit that calls might be more expensive than puts, we extend the analysis to examine if this

possible extra demand for calls leads them to be more expensive than puts. We examine this

issue by taking an approach inspired by Cremers and Weinbaum (2010). Similar in spirit to

the creation of delta groups, we create five groups based on time to maturity. Time group

1 has the lowest time-to-maturity, while time group 5 has the highest time-to-maturity. We

then sort options based on these 25 groups of delta and time-to-maturity. For each group,
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we then calculate the average implied volatility of calls and puts. We then calculate the

volatility spread as the difference between the implied volatility of calls and puts. We then

plot the volatility spread as a function of the delta group and of the time-to-maturity group.

4 Results

4.1 Volatility Smile

Figure 6 plots the volatility smile of bitcoin options as a function of the delta groups.

We can see that Bitcoin options exhibit an almost symmetrical smile. This means that

the implied volatility of ATM options is lower than others in general, while the implied

volatility of OTM put and call options is higher and approximately the same at both ends.

This pattern of volatility smile is consistent with a lower level of risk aversion by market

participants and can be indicative of speculative behavior. We further investigate implied

volatility smiles in more detail by examining the differences between call and put options

smiles separately (figure 7). We find that Bitcoin put options display a reverse skew while

Bitcoin call options exhibit an almost symmetric smile, a result consistent with speculative

demand for Bitcoin call options, keeping in mind that the reason why call options do not

display a forward skew (with DOTM calls being more expensive than DITM calls) is because

of some pressure from the negative skew puts and the somewhat adherence to the put-call

parity condition despite the somewhat low liquidity leading to high spreads.

[Figure 6 about here.]

[Figure 7 about here.]

We finally apply the same approach to S&P 500 index options, with their resulting

implied volatility smile displayed in figure 8. We can here observe the well-known reverse

implied volatility skew, with OTM puts having the highest implied volatility and OTM calls
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having the lowest implied volatility. This result is not surprising as it has been documented

extensively and particularly given the rampant volatility present during COVID where stocks

were sharply falling and rising, creating an increased demand for protective put options.

[Figure 8 about here.]

4.2 Volatility Surface

As an illustration, figure 9 reports the volatility surface of Bitcoin options on Aug 2nd,

2021 where we can see a U-shape pattern and a somewhat positive term structure. The

benefit of using a single day to calculate the volatility surface is that it eliminates the

daily changes in implied volatility caused by external factors. The obvious drawback of

a one-day chart is it does not provide a complete picture of the entire sample. In that

spirit, figure 10 subsequently reports the volatility surface for the full sample period, where,

consistent with the smile found earlier, we first observe that Bitcoin OTM options have

a greater implied volatility than ATM options. Interestingly, we also observe a positive

term structure for OTM calls (ITM puts). This result is consistent with an attempt by

market participants to mimic holding Bitcoin at a lower cost where, rather than buying

Bitcoin directly, market participants can buy longer-dated OTM call options in an attempt

to replicate holding Bitcoin. We examine this further by focusing on the volatility surface of

call options only (figure 11) and find that this is indeed appears to be the case. The reason

why this phenomenon is in line with a mimicking strategy has to do with the kurtosis of

the physical distribution: we find the daily and monthly kurtosis are much greater than the

yearly kurtosis. Das and Sundaram (1999) find that when such a situation exists, the implied

volatility of long-term options should be lower than that of short-dated options. However, as

we can see, this is not the case here, providing additional evidence for the mimicking/lottery

theory and the resulting increased buying pressure for longer-dated OTM call options.

[Figure 9 about here.]
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[Figure 10 about here.]

[Figure 11 about here.]

4.3 Risk-Neutral Moments

In the next analysis, we examine and compare the risk-neutral moments implied by

options written on Bitcoin futures and the S&P 500 index. Figure 12 depicts the risk-neutral

skewness over time for options on Bitcoin and the S&P 500. The figure shows that Bitcoin

displays a higher level of risk-neutral skewness than the S&P 500 index, with Bitcoin also

showing a relatively smoother risk-neutral skewness and several bursts of positive skewness.

A positive skewness indicates that demand for out-of-the-money calls is higher than for in-

the-money puts. Meanwhile, the S&P 500 index displays a considerable negative risk-neutral

skewness, especially at the beginning of COVID when the stock market was experiencing

a correction. Since a negative risk-neutral skewness indicates that the demand for out-of-

the-money puts is higher than for out-of-the-money calls, this result is consistent with the

correction that the market was experiencing during COVID where one would expect to see

more demand for puts than for calls. In a similar manner, figure 13 depicts the risk-neutral

kurtosis for Bitcoin Futures and the S&P500 index. The results are more mixed in this

instance, as the S&P 500 index originally displays lower kurtosis levels in the first half of

the sample but subsequently higher levels in the second half.

[Figure 12 about here.]

[Figure 13 about here.]

4.4 At-The-Money Implied Volatility

In this section, applying the methodology described in Section 3.4, we examine the rela-

tionship between call and put options’ ATM implied volatility and the return of the corre-
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sponding underlying asset (Bitcoin futures or S&P 500 index), with results for three models

each time reported in tables 3-6. In every table, the dependent variable is the change in ATM

implied volatility, while the independent variables are Bitcoin futures or S&P 500 index re-

turns and a mix of control variables (varying depending on which of the three models is being

run): volume, normalized call open interest, normalized put open interest, lagged ATM im-

plied volatility, and the VIX (for Bitcoin options only). Table 3 shows that Bitcoin returns

have a positively statistically significant relationship with ATM call implied volatility, indi-

cating that as Bitcoin value increases, market participants demand more call options. This

result is consistent with the lottery-like hypothesis whereby speculation activity increases

with the positive performance of the underlying asset (Bitcoin) and is robust across all three

models being run. However, when we perform the above analysis for the S&P 500, we find a

negative relationship between returns for both puts and calls (Table 5 and Table 6), a result

consistent with Black (1976) and his leverage effect theory, with further studies attributing it

to hedging and risk aversion effects. (Hasanhodzic and Lo (2011) and Hibbert et al. (2008)).

The hedging effect can be seen in table 6 where for S&P 500 index put options we observe

a consistent negative relationship between ATM implied volatility and S&P 500 returns, in

significant contrast with how participants behave in the Bitcoin sphere. In the case of the

S&P 500 index, participants buy put options when the stock market is falling as a way to

hedge against a possible further correction. And owing to high liquidity and the holding of

the put-call parity condition, we find this negative relationship to be present in call options

as well (table 5). This is in contrast with the Bitcoin futures arena where investors buy call

options when Bitcoin value is increasing as a way to speculate on future possible additional

positive returns, as an attempt to capitalize on possible momentum. This increased demand

for Bitcoin call options causes their relative prices to go up, leading to a positive relationship

between ATM implied volatility and Bitcoin returns. Another noticeable observation is that

due to lower liquidity levels creating higher spreads which serve as an impediment to put-call

parity, we do not observe the same relationship between Bitcoin returns and put options’

16



implied volatility levels (Table 4). The nonexistent relation between ATM implied volatility

for Bitcoin put options and returns gives additional support to the lottery hypothesis as it

indicates that when the Bitcoin market is rallying, most of the trading activity takes place

with call options.

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

In addition to our main finding, we also find that Bitcoin lagged ATM implied volatility

has a significant inverse relationship with current ATM implied volatility. This is similar to

what Bollen and Whaley (2004) find in their analysis of equity markets. We moreover find

that Bitcoin futures volume has a significant positive relationship with Bitcoin call ATM

implied volatility. This result indicates that the informational effect of volume is very much

relevant, consistent with the findings of Alexander et al. (2022).

Finally, in addition to the overall nonexistent relationship between Bitcoin returns and

put options ATM implied volatility established in table 4, we find a moderate positive re-

lationship between put options ATM implied volatility levels and the VIX (column 3), an

indication of some contagion between the S&P 500 index and Bitcoin markets. This would

seem to indicate that when there is a sense of fear on the equities side, with market par-

ticipants feeling that a correction in one asset class is likely to spread to another, investors

using protection across multi-asset classes also buy Bitcoin put options.
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4.5 Implied Volatility Slope

As an additional exercise, we also examine the dynamics of the volatility slope, namely,

what affects its changes over time. We define the volatility slope as the difference between

out-of-the-money (OTM) options and at-the-money (ATM) options. For the put implied

volatility slope, this is the difference between the average implied volatility of puts in the

delta group 2 and in the delta group 3. For the call implied volatility slope, this is the

difference between the implied volatility of calls in the delta group 4 and in the delta group

3.

The results of this analysis are reported in table 7, with all coefficients/estimates highly

statistically significant. The put implied volatility slope flattens when Bitcoin prices are

rallying, indicating that the demand for OTM puts decreases relative to that of ATM puts.

This finding is consistent with market participants being less worried about the downside

during or after a good performance and thus with decreasing their demand for OTM puts

usually purchased for downside protection. When examining the call implied volatility slope,

we also observe that the slope flattens, indicating that ATM calls become more expensive

relative to OTM calls. While at first this result might not appear to fully support the spec-

ulative "inexpensive long shot strategy/lottery" hypothesis whereby more OTM calls would

theoretically be purchased, ATM options have higher liquidity and volume and therefore

more of the purchasing activity could be taking place in this group when Bitcoin prices are

rallying. One major reason for this is the fact that as long as the call option’s maturity

is not extremely long, an ATM call option does not cost significantly much more than an

OTM one given the fact that most of the option pricing function below the strike price is

fairly flat; thus, by buying call options that are closer to being at-the-money, one does not

pay significantly more of a premium and yet can enjoy the potential upside much sooner

since it is precisely around the strike price that the Gamma or curvature is at its highest,

with the option value rising significantly and quickly past that point. When we perform the
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above analysis for the S&P 500 (Table 8), although the levels of significance are more mixed

for put options, we find that the put implied volatility slope overall also flattens when the

S&P 500 index is rising, indicating that the demand for OTM puts decreases relative to that

of ATM puts, a phenomenon once again consistent with traders being less worried about

downside protection during positive returns or news. OTM calls, on the other hand, become

relatively more expensive than ATM ones, as evidenced by a steepening of their implied

volatility curve.

[Table 7 about here.]

[Table 8 about here.]

4.6 Call-Put Implied Volatility Spread

Finally, after having established the differences in smiles between Bitcoin put and call

options, we examine whether there is a difference in their call-put volatility spread. Having

already demonstrated that the implied volatility of out-of-the-money calls is significantly

higher than in-the-money puts - particularly true for the delta group 5 (deep-out-of-the-

money calls and deep-in-the-money puts), we now examine this further by following Cremers

and Weinbaum (2010) and create five groups based on time to maturity. Time group 1 has

the lowest time to maturity, while time group 5 has the highest time-to-maturity. We then

sort options based on these 25 groups of delta and time-to-maturity. For each group, we then

calculate the average implied volatility of calls and puts. We then calculate the volatility

spread as the difference between the implied volatility of calls and puts.

[Figure 14 about here.]

Figure 14 shows the results of this analysis, revealing that OTM Bitcoin call options are

more expensive than ITM put options. We also observe that longer maturity calls are rela-
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tively more expensive than longer maturity puts, another indication of market participants

trying to mimic holding Bitcoin as a cheaper long-term speculative strategy.

5 Conclusion

We analyze the trading patterns of options on Bitcoin futures and compare them with

those of options on the S&P 500 index, investigating whether Bitcoin futures options are used

as a way to play the "Bitcoin lottery", a less expensive way to have a chance at participating

in a Bitcoin currency rally in the long term. We uncover two important results that highlight

how market participants act differently in the Bitcoin options sphere compared to those in

the S&P 500 options market. Examining the Bitcoin volatility smile, we find that Bitcoin

options reveal a symmetric smile while S&P 500 options displays the well-known negative

skew. This result indicates how participants in the S&P 500 options market use put options

as a way to hedge while those in the Bitcoin options market do not. Our second result

which cements our lottery hypothesis is the relationship between call options at-the-money

implied volatility and returns in both these markets. While this analysis in S&P 500 options

leads to the established negative relationship between returns and at-the-money implied

volatility levels (an indication of risk aversion and hedging behavior in this market), we find

the opposite relationship in the case of Bitcoin futures options. This indicates that when

Bitcoin prices are rallying, market participants demand more Bitcoin call options in the hope

of capitalizing on further increases in the currency.

[Table 9 about here.]
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Figure 1: Bitcoin Prices

The figure depicts daily Bitcoin Futures Prices from Jan 13th 2020 to Dec 31st 2021.
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Figure 2: S&P 500 Index Levels

The figure depicts daily S&P 500 index levels from Jan 1st 2020 to Dec 31st 2021.
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Figure 3: S&P 500 and Bitcoin Returns

The figure depicts daily returns from Jan 13th 2020 to Dec 31st 2021 for the S&P 500 index and Bitcoin.
Returns are calculated as the log difference between prices at time t and t-1
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Figure 4: Bitcoin ATM Call Options Implied Volatility

The figure depicts Bitcoin at-the-money call options Implied Volatility levels from Jan 13th 2020 to Dec 31st
2021.
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Figure 5: S&P 500 index ATM Call Options Implied Volatility

The figure depicts S&P 500 at-the-money call options Implied Volatility levels from Jan 1st 2020 to Dec 31st
2021.
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Figure 6: Volatility Smile of Bitcoin Options

The figure displays the volatility smile of Bitcoin options with calls and puts combined. The volatility smile
is calculated using the methodology of Bollen and Whaley (2004). Options are sorted according to their
respective Delta groups and the average Implied Volatility of each group is computed. Finally, the average
implied volatility is plotted against the Delta Group.
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Figure 7: Volatility Smile of Bitcoin Call and Put Options

The figure displays the volatility smile of Bitcoin Calls (blue) and Puts (red). The volatility smile is calculated
using the methodology of Bollen and Whaley (2004). Options are sorted according to their respective Delta
groups and the average Implied Volatility of each group is computed. Finally, the average implied volatility
is plotted against the Delta Group.
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Figure 8: Volatility Smile of S&P 500 Index Options

The figure displays the volatility smile of S&P 500 index options. The volatility smile is calculated using the
methodology of Bollen and Whaley (2004). Options are sorted according to their respective Delta groups
and the average implied volatility of each group is computed. Finally, the average implied volatility is plotted
against the Delta Group.
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Figure 9: Volatility Surface of Bitcoin Options on August 2nd, 2021

The figure plots the volatility surface of Bitcoin options on August 02, 2021. The volatility surface is
estimated using a Cubic Spline approach. The x-axis shows the moneyness, calculated as the futures price
divided by the strike price. The y-axis represents the term structure measured as days to maturity and the
z-axis reports the implied volatility.

33



Figure 10: Volatility Surface of Bitcoin Options

The figure displays the volatility surface of Bitcoin Futures Options for the entire sample. The volatility
surface is plotted using a variant of the Cubic Spline - thin plate spline. The x-axis shows the moneyness,
calculated as the futures price divided by the strike price. The y-axis represents the term structure measured
as days to maturity and the z-axis reports the implied volatility.
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Figure 11: Volatility Surface of Bitcoin Call Options

The figure displays the volatility surface of Bitcoin futures call options. The volatility surface is plotted using
a variant of the Cubic Spline - thin plate spline. The x-axis shows the moneyness, calculated as the futures
price divided by the strike price. The y-axis represents the term structure measured as days to maturity and
the z-axis reports the implied volatility.
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Figure 12: Risk-Neutral Skewness

The figure plots the risk-neutral skewness levels derived from Bitcoin futures options and from S&P 500
index options.
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Figure 13: Risk-Neutral Kurtosis

The figure plots the risk-neutral kurtosis levels derived from Bitcoin futures options and from S&P 500 index
options.
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Figure 14: Volatility Spread of Bitcoin

This figure plots the volatility spread of Bitcoin Futures Options. The volatility spread is calculated as
the difference between the average implied volatility of Bitcoin calls and puts. The x-axis shows the Delta
Group, the y-axis shows the time to maturity, and the z-axis measures the implied volatility spread.
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Table 1: Summary Statistics

This table reports summary statistics (minimum, maximum, mean, median,
and standard deviation) for all options in our sample. For the period ranging
from January 2020 to December 2021, there are 8,033 Bitcoin option observa-
tions and 8,475,899 S&P 500 index option observations.

Min Max Mean Median SD

A. Bitcoin options

Option price 0.1 61,085 18,373 870 2,864
Strike 1,000 150,000 34,581 32,000 22,532
Delta -1.000 1.000 0.065 0.082 0.347
Moneyness 0.095 9.395 1.000 0.981 0.329
Implied Volatility 0.153 2.022 0.780 0.766 0.233
Time to Maturity 0.0027 1.6521 0.1021 0.0767 0.0919

B. S&P 500 index options

Option price 0.0 4,630 331 102 535
Strike 100 9,200 3,362 3,375 97,173
Delta -1.000 1.000 0.164 0.000 0.568
Moneyness 0.021 2.190 0.889 0.918 0.224
Implied Volatility 0.024 3.000 0.360 0.290 0.282
Time to Maturity 0.0027 5.1315 0.3118 0.1589 0.4465
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Table 2: Delta Group Classification

The table describes the classification of the options into delta groups using their
delta values.
Category Labels Range

1 Deep in the Money Calls 0.875 < ∆C < 0.98
Deep Out of the Money Puts -0.125 < ∆P < −0.02

2 In the Money Calls 0.625 < ∆C < 0.875
Out of the Money Puts -0.375 < ∆P < −0.125

3 At the Money Calls 0.375 < ∆C < 0.625
At the Money puts -0.625 < ∆P < −0.375

4 Out of the Money Calls 0.125 < ∆C < 0.375
In the money put -0.875 < ∆P < −0.625

5 Deep out of the Money Calls 0.02 < ∆C < 0.125
Deep in the Money puts -0.98 < ∆P < −0.875
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Table 3: ATM Implied Volatility of Bitcoin Call Options

The table reports the results of the regression described in Equation 3. The dependent variable
for the regression is the change in ATM IV for Bitcoin futures call options. In Model 1,
the independent variables are Bitcoin returns, lagged ATM IV, and Bitcoin futures volume. In
Model 2, the independent variables are Bitcoin returns, Bitcoin futures volume, normalized open
interest for calls, and normalized open interest for puts. In Model 3, the dependent variables
are Bitcoin returns, Bitcoin futures volume, normalized open interest for calls, normalized
open interest for puts, and the VIX. t-statistics are reported in parentheses. The number of
observations is based on available data for all variables. * p < .1; ** p < .05; *** p < .01.

Dependent variable (1)
ATM Call IV

(2)
ATM Call IV

(3)
ATM Call IV

Bitcoin Return 0.645*** 0.718*** 0.732***
3.70 3.99 3.98

Lagged ATM Implied Volatility -0.384*** -0.379*** -0.378***
-9.36 -9.23 -9.21

Bitcoin Futures Volume 4.74e-06*** 4.16e-06** 4.10e-06**
2.55 2.19 2.15

Normalized Call Open Interest -0.0026 -0.0025
-0.20 -0.19

Normalized Put Open Interest 0.031** 0.030**
2.18 2.17

VIX 0.0369
0.381

Observations 492 492 492
R Squared 0.189 0.197 0.198
F Stat 38 23.9 19.9
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Table 4: ATM Implied Volatility of Bitcoin Put Options

The table reports the results of the regression described in Equation 3. The dependent variable
for the regression is the change in ATM IV for Bitcoin futures put options. In Model 1,
the independent variables are Bitcoin returns, lagged ATM IV, and Bitcoin futures volume. In
Model 2, the independent variables are Bitcoin returns, Bitcoin futures volume, normalized open
interest for calls, and normalized open interest for puts. In Model 3, the dependent variables
are Bitcoin returns, Bitcoin futures volume, normalized open interest for calls, normalized
open interest for puts, and the VIX. t-statistics are reported in parentheses. The number of
observations is based on available data for all variables. * p < .1; ** p < .05; *** p < .01.

Dependent variable (1)
ATM Put IV

(2)
ATM Put IV

(3)
ATM Put IV

Independent variables

Bitcoin Return 0.199 0.262 0.327 *
1.24 1.58 1.93

Lagged ATM Implied Volatility -0.246*** -0.247*** -0.248***
-5.61 -5.64 -5.68

Bitcoin Futures Volume 3.67e-06** 2.83e-06 2.61e-06
2.14 1.62 1.49

Normalized Put Open Interest 0.034*** 0.033***
2.65 2.59

Normalized Call Open Interest 0.007 0.007
0.58 0.60

VIX 0.162*
1.77

Observations 492 492 492
R Squared 0.066 0.081 0.087
F Stat 11.5 8.58 7.7
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Table 5: ATM Implied Volatility of S&P 500 Call Options

The table reports the results of the regression described in Equation 3. The dependent variable
for the regression is the change in ATM implied volatility for S&P 500 index call options. In
Model 1, the independent variables are S&P 500 returns, and lagged ATM implied volatility.
In Model 2, the independent variables are S&P 500 returns, lagged ATM implied volatility,
and S&P 500 volume. In Model 3, the dependent variables are S&P 500 returns, lagged ATM
implied volatility, S&P 500 volume, normalized open interest for calls, and normalized open
interest for puts. t-statistics are reported in parentheses. The number of observations is based
on available data for all variables. * p < .1; ** p < .05; *** p < .01.

Dependent variable (1)
ATM Call IV

(2)
ATM Call IV

(3)
ATM Call IV

Independent variables

S&P 500 Return -3.953∗∗∗ -3.921∗∗∗ -4.032∗∗∗

-32.01 -31.41 -31.47

Lagged ATM Implied Volatility -0.122∗∗∗ -0.127*** -0.114***
-4.89 -5.05 -4.50

S&P 500 Volume 2.67e-12 5.73e-12∗∗∗

1.61 2.77

Normalized Call Open Interest 0.0118∗∗∗

2.68

Normalized Put Open Interest -0.014∗∗∗

-2.51

Observations 502 502 502
R Squared 0.706 0.708 0.714
F Stat 599 402 248
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Table 6: ATM Implied Volatility of S&P 500 Put Options

The table reports the results of the regression described in Equation 3. The dependent variable
for the regression is the change in ATM implied volatility for S&P 500 index put options. In
Model 1, the independent variables are S&P 500 returns, and lagged ATM implied volatility.
In Model 2, the independent variables are S&P 500 returns, lagged ATM implied volatility,
and S&P 500 volume. In Model 3, the dependent variables are S&P 500 returns, lagged ATM
implied volatility, S&P 500 volume, normalized open interest for calls, and normalized open
interest for puts. t-statistics are reported in parentheses. The number of observations is based
on available data for all variables. * p < .1; ** p < .05; *** p < .01.

Dependent variable (1)
ATM Put IV

(2)
ATM Put IV

(3)
ATM Put IV

Independent variables

S&P 500 Return -3.233∗∗∗ -3.197∗∗∗ -3.228∗∗∗

-24.02 -23.49 -22.86

Lagged ATM Implied Volatility -0.0097 -0.0164 -0.0129
-0.32 -0.53 -0.41

S&P 500 Volume 3.03e-12* 3.40e-12
1.65 1.48

Normalized Put Open Interest -0.0019
-0.30

Normalized Call Open Interest 0.0048
0.98

Observations 502 502 502
R Squared 0.549 0.552 0.553
F Stat 304 204 123
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Table 7: Bitcoin Implied Volatility Slope

This table reports the results of the regression described in Equation 4. The left-hand side
of the table reports the results for the Bitcoin call options implied volatility slope while the
right-hand side pertains to the put options. The dependent variable for the regression is
the change in implied volatility slope. In Model 1, the independent variable is Bitcoin
returns. In Model 2, the independent variables are Bitcoin returns and the lagged volatility
slope. In Model 3, the independent variables are Bitcoin returns, lagged volatility slope,
and Bitcoin futures volume. t-statistics are reported in parentheses. The number of
observations is based on available data for all variables.

Call IV Slope Put IV Slope

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Return -0.904∗∗∗ -0.565∗∗∗ -0.565∗∗∗ -0.433∗∗∗ -0.479∗∗∗ -0.478∗∗∗

-2.92 -2.00 -2.00 -4.34 -5.26 -5.24

LagIV Slope -0.424∗∗∗ -0.424∗∗∗ -0.424∗∗∗ -0.410∗∗∗

-10.38 -10.37 -10.11 -10.10

V olume 8.11e-08∗∗∗ 8.11e-08∗∗∗

-0.27 -0.09

Observations 493 492 492 493 492 492
Rsq 0.0171 0.195 0.195 0.037 0.203 0.203
F Stat 8.53 59.1 39.4 18.8 62.4 41.5
Nota: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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Table 8: S&P 500 Implied Volatility Slope

This table reports the results of the regression described in Equation 4. The left-hand side
of the table reports the results for the S&P 500 index call options implied volatility slope
while the right-hand side pertains to the put options. The dependent variable for the
regression is the change in implied volatility slope. In Model 1, the independent variable is
S&P 500 returns. In Model 2, the independent variables are S&P 500 returns and the
lagged volatility slope. In Model 3, the independent variables are Bitcoin returns, lagged
volatility slope, and volume. t-statistics are reported in parentheses. The number of
observations is based on available data for all variables.

Call IV Slope Put IV Slope

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Return 0.274*** 0.263*** 0.262*** -0.012 -0.023* -0.018 ***
26.70 25.50 25.20 -0.96 -5.70 -1.47

LagIV Slope -0.147*** -0.147 *** -0.190*** -0.196***
-5.12 -5.11 –4.22 -4.40

V olume -1.26e-14 5.08e-13**
- 0.09 - 0.09

Observations 493 492 492 493 492 492
Rsq 0.0171 0.195 0.195 0.037 0.203 0.203
F Stat 8.53 59.1 39.4 18.8 62.4 41.5
Nota: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
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Table 9: Appendix : Variable Definition

Variable Definition and Source
Moneyness Futures Price divided by Strike Price.
Delta Sensitivity of underlying option price to changes in underlying price.
Implied Volatility Implied Volatility calculated using the Black-Scholes model
Time To Maturity Days to maturity divided by 365
Delta Group Options are sorted into five groups according to the Delta of the option.
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