The Nature of Chain Drift

Ludwig von Auer (Universität Trier)

Rio de Janeiro Ottawa Group Meeting May, 2019

1 Introduction

- For inflation measurement, scanner data have many advantages.
- However, they can give rise to
 - measurement bias caused by changes in the universe of items,
 - chain drift caused by
 - post sales dip
 - delayed consumer adjustment.

- The presentation proceeds in three stages:
 - Stage 1: Two forces of chain drift are identified:
 - pendular quantities (post sales dip),
 - sticky quantities (delayed consumer adjustment).
 - Stage 2: A utility framework is introduced that generates pendular and sticky quantities.
 - Stage 3: A stress test for different RGEKS indices is conducted.

2 Synchronous Quantity Responses to Price Changes

- Let $P^{t/t-1}$ denote a direct price index (e.g. Laspeyres, Törnqvist) for the comparison period t and the base period t-1.
- A direct price index $P^{t/t-1}$ exhibits chain drift, if
 - in period T all prices and quantities reverse to their values of period 0, but
 - chaining $P^{t/t-1}$ gives

$$P^{1/0} \cdot P^{2/1} \cdot \ldots \cdot P^{T/T-1} \neq 1$$

• The Törnqvist index is a weighted average of price ratios:

$$\ln P_{\mathsf{T\ddot{o}}}^{t/t\text{-}1} = \sum \frac{1}{2} \left(\frac{p_i^{t\text{-}1} x_i^{t\text{-}1}}{\sum p_j^{t\text{-}1} x_j^{t\text{-}1}} + \frac{p_i^t x_i^t}{\sum p_j^t x_j^t} \right) \ln \frac{p_i^t}{p_i^{t\text{-}1}}$$

- The weight attached to item i
 - increases in both prices $(p_i^{t-1} \text{ and } p_i^t)$ and both quantities $(x_i^{t-1} \text{ and } x_i^t)$,
 - is symmetric in the two periods.
- Therefore, the Törnqvist index belongs to the class of SWAP indices (Symmetrically Weighted Averages of Price ratios).

	high									
price	normal									
	low									
	period	0	1	2	3	4	5	6	7	8
	large									
quantity	normal									
	small									

Figure 1: Synchronous Quantity Reactions to Price Changes.

Figure 1: Synchronous Quantity Reactions to Price Changes.

3 Pendular Quantities

- Synchronous price and quantity changes:
 SWAP indices are immune to chain drift, while the Laspeyres index and Paasche index are not (if elasticities of demand differ from 1).
- Asynchronous price and quantity changes: SWAP indices generate chain drift.
- Usually this is attributed to sales in conjunction with inventory behaviour of consumers.
- Such behaviour leads to pendular quantities.
- Also price spikes can trigger pendular quantities.
- Pendular quantities generate downward chain drift.

Figure 2: Pendular Quantity Reactions Caused by Sales Or Price Spikes.

Figure 2: Pendular Quantity Reactions Caused by Sales Or Price Spikes.

Figure 2: Pendular Quantity Reactions Caused by Sales Or Price Spikes.

Figure 2: Pendular Quantity Reactions Caused by Sales Or Price Spikes.

Figure 2: Pendular Quantity Reactions Caused by Sales Or Price Spikes.

Figure 2: Pendular Quantity Reactions Caused by Sales Or Price Spikes.

4 Sticky Quantities

- Another form of asynchronous quantity responses are the consumers' delayed quantity responses to price changes (e.g., due to adjustment cost or search cost).
- This case is denoted here as sticky quantities.
- They lead to upward chain drift.

	high									
price	normal									
	low									
	period	0	1	2	3	4	5	6	7	8
	large									
quantity	normal									
	small									

Figure 3: Sticky Quantity Reactions to Price Changes.

Figure 3: Sticky Quantity Reactions to Price Changes.

5 RGFKS Indices

- Observed chain drift is the net effect of two counteracting forces:
 - downward chain drift from pendular quantities (sales in conjunction with inventory behaviour),
 - upward chain drift from sticky quantities (delayed consumer adjustment due to search and adjustment costs).
- Multilateral price indices have been proposed as a remedy.
- One such option are RGEKS indices.

Figure 4: Different Variants of RGEKS Indices.

Figure 4: Different Variants of RGEKS Indices.

W = window splice (Krsinich, 2016)

Figure 4: Different Variants of RGEKS Indices.

W = window splice (Krsinich, 2016)

H = half splice (de Haan, 2015)

Figure 4: Different Variants of RGEKS Indices.

W = window splice (Krsinich, 2016)

H = half splice (de Haan, 2015)

geometric average gives mean splice (Diewert and Fox, 2017)

Figure 4: Different Variants of RGEKS Indices.

- The mean movement splice RGEKS (Melser, 2018) also uses the averaging principle.
- It is easier to compute than the mean splice.

Figure 5: Another RGEKS Variant: Mean Movement Splice.

6 A Simple Utility Framework Generating Pendular and Sticky Quantities

- In real world data, price and quantities do not return to their original levels.
- Therefore, no unassailable reference exists for assessing the extent of chain drift.
- The various chained direct price indices (e.g. chained Törnqvist) and RGEKS indices are exposed to a stress test with the following features:
 - 40 items (no churn),
 - phase-in interval: 10 periods in which all items are sold at the "base price",
 - core-interval: 100 periods with longer lasting price changes (10 items) or/and short sales (10 items),
 - phase-out interval: 10 periods in which all items are sold at their "base price".

- Quantities are the result of the consumers' utility maximizing behaviour.
- This requires a utility function that allows for
 - stocking behaviour (leading to pendular quantities) and
 - delayed adjustment (leading to sticky quantities).
- Since scanner data items represent differentiated goods, we use a myopic Dixit-Stiglitz CES utility function and amend it to allow for sticky and pendular quantities.
- In this utility function, stocking directly contributes to current utility.
- Strong deviations from former purchasing behaviour directly cause "disutility" (e.g., search or adjustment costs); this is a feature borrowed from habit formation models.

7 Results of the Stress Test

- Three scenarios are considered:
 - pendular quantities (stocking, but no deferred adjustment)
 - sticky quantities (deferred adjustment, but no stocking)
 - pendular + sticky quantities (stocking and deferred adjustment).

Table 1: Chain Drift of SWAP Indices (in %).

	Pendular	Sticky	Hybrid
Törnqvist	-25.15	7.41	-1.62
Walsh-2	-37.69	7.52	-2.29
Walsh-Vartia	-37.78	7.53	-2.31
Theil	-34.19	7.49	-2.07
Vartia	-33.93	7.49	-2.08

Table 2: Chain Drift of Some Other Direct Price Indices (in %).

	Pendular	Sticky	Hybrid
Laspeyres	468.94	29.76	337.07
Paasche	-88.94	-11.53	-77.68
Fisher	-20.66	7.15	-1.24
Drobisch	-18.48	7.19	0.22
Walsh	-37.87	7.53	-2.33
Marshall-Edgeworth	-20.70	7.15	-1.28
Banerjee	-20.70	7.15	-1.28
Davies	-22.80	7.28	-1.40
Lehr	-44.79	7.88	-3.10

Table 3: Chain Drift of RGEKS Indices (in %) for Different Window Lengths (4, 8, 12, and 24 Periods).

	Pendular					Sticky				Hybrid			
	4	8	12	24	4	8	12	24	4	8	12	24	
Mean Move.	-2.10	0.32	0.02	0.12	3.93	1.77	1.12	0.49	2.52	1.29	0.95	0.54	
Mean	-2.10	0.32	0.03	0.11	3.93	1.77	1.12	0.49	2.52	1.29	0.94	0.53	
Movement	-5.05	-1.57	-2.09	-0.49	3.79	1.57	1.11	0.42	0.89	0.50	0.46	0.26	
Half	0.04	0.31	0.67	0	4.08	1.83	0.87	0.43	3.35	0.75	0.32	0.34	
Window	-1.22	2.50	1.69	3.03	3.91	2.16	2.20	2.65	3.33	4.32	5.05	6.68	

8 Conclusions

- Pendular quantities cause downward chain drift.
- Search and adjustment costs lead to sticky quantities
- Sticky quantities cause upward chain drift.
- Observed chain drift is the net effect of these two. counteracting forces.
- RGEKS indices curb the chain drift problem.
- The mean movement RGEKS index shows the same results as the mean RGEKS.