Challenging the CES assumption with scanner data-pitfalls of the fixed basket

Can Tongur, Statistics Sweden

The Ottawa Group Meeting in Rio de Janeiro, Brazil 8-10 May 2019

What is this about?

- Established methodology –recommended and used
- A rather new data source rendering insights (novel?)
- Some supportive theory backing up the methodology
- An empirical study on scanner data
- Some ideas to take home and to think through?

The Constant Elasticity of Substitution assumption (1)

Elasticity of Substitution

- The simplified situation of consumers discriminating between obviously substitutable items as a response to price changes (substitution in "narrow sense", de Haan (2001))
 Reminisces the ex post Laspeyres v.s. Paasche discussion
- Elasticity of substitution is a <u>concept</u> of what-for-what: how many green apples for red apples, given a change in relative prices
- In practically all cases, it is a parameter of non-negative magnitude (≥0)

The Constant Elasticity of Substitution assumption (2)

Assuming a constant elasticity means that...

- ...substitution is thought to be equal for <u>all</u> pairs of items in some aggregate under consideration and hence, in <u>all</u> possible baskets
- ...there is a time invariance concept

And it implies that...

- …the universe of items is "closed under sampling" (Laspeyres ⇔ Paasche)
- ...sampling is a valid approach for including items (randomness is amical)
- ...homothetic preferences income levels do not affect choices (timing not an issue)

Estimating the elasticity of substitution

• Balk (1999) derives an expression from which estimation boils down to the application of some numerical procedure, for a basket with n items (c.f. §17.61 in the manual: the Lloyd-Moulton index):

$$\left[\sum_{i=1}^{n} s_{i}^{0} \binom{p_{i}^{t}}{p_{i}^{0}}^{(1-\sigma)}\right]^{1/(1-\sigma)} = \left[\sum_{i=1}^{n} s_{i}^{t} \binom{p_{i}^{t}}{p_{i}^{0}}^{-(1-\sigma)}\right]^{-1/(1-\sigma)}$$

• There is perhaps an asynchrony in general, as pointed out by Shapiro & Wilcox (1997):

"The mismatch in frequency between the price and expenditure data creates an ambiguity as to how one might best approximate the index formulas prescribed by theory"

A sample of items deemed suitable for analysis

The following set of multi-brand products were analyzed:

- 1) Sugar free soda beverage, 1.5 Liter (2 varieties, pps-sampled)
- 2) Dairy product, 1 Liter (2 varieties, pps-sampled)
- 3) Coffee, 450-500 grams, grounded (<u>all</u> varieties = census)
- 4) Cheese, packaged, several similar varieties (n most sold varieties, cut-off-sample)

Coverage well*, representativeness well*, by-the-book approach

Two ways of looking at coverage

Coverage for coffee during one year, as used for analysis

How the data was used to render necessary input to the estimation

- The scanner data is weekly turnover and amount of units sold per item (identified through EAN/GTIN) and per store
- Data is aggregated over weeks to a monthly turnover per store and included if it has a match with the base period for the same store (= balance)
- Estimations are through "item aggregation over stores", rendering one aggregate monthly price and expenditure share (summing to unity) per item

Summary statistics on estimates of σ

Product	#estimates	Mean	Median	Std. dev.	Share σ <0
Soda	144	3.6	2.05	10.35	22%
Dairy	72	9.68	1.34	63.1	44%
Coffee	36	2.56	2.92	2.03	11%
Cheese	42	4.21	4.05	1.41	-

Note: column with #estimates refers to number of estimated σ over all time points and included retail chains (one estimate per retail chain and period)

A comparison of four price indices

Laspeyres, Paasche and Lloyd (σ = median), as per cent deviation from unweighted (standard) Jevons

Soda σ = 2.05		Dairy $\sigma = 1.34$		Coffee	Coffee σ = 2.92		Cheese σ = 4.05					
Period	Lasp.	Paas.	Lloyd	Lasp.	Paas.	Lloyd	Lasp.	Paas.	Lloyd	Lasp.	Paas.	Lloyd
1	2.5	2.7	2.2	-0.2	-0.2	-0.1	12.7	6.9	10.4	-2.4	-9.9	-6.3
2	2.5	2.6	2.3	0.5	0.5	0.6	12.4	6.4	10.1	-0.3	-6.6	-3.5
3	5.6	6.2	4.8	-1.7	-1.6	-1.9	12.5	9.8	10.8	-4.4	-7.3	-6.6
4	3.8	4.3	3.1	-5.4	-5.3	-5.4	6.0	4.6	4.8	-3.8	-9.3	-7.2
5	6.4	8.0	4.2	-5.8	-5.7	-5.8	11.2	8.5	9.5	-3.5	-10.0	-7.6
6	11.4	16.0	7.8	-5.4	<i>-5.4</i>	-5.4	7.5	3.7	5.9	-3.2	-6.4	-5.0
7	5.8	8.1	2.9	-5.9	-5.9	-5.9	14.3	9.6	11.8	-3.0	-8.0	-5.8
8	5.9	8.1	3.3	-3.2	-3.1	-3.5	10.8	6.6	8.8	-2.1	-8.0	-5.4
9	0.1	0.3	-0.2	-5.7	-5.7	-5.7	16.0	9.3	12.8	-3.1	-9.3	-7.0
10	6.2	8.7	3.6	-8.2	-8.2	-8.4	14.7	10.2	11.9	-3.3	-9.3	-6.5
11	1.7	2.3	1.2	-10.6	-10.6	-10.8	17.0	10.0	13.6	0.2	-5.4	-2.0
12	-0.2	-0.2	-0.3	-9.6	-9.5	-9.9	5.7	3.6	3.9	-0.9	-5.6	-3.0

Remarks on estimating σ

• After some consideration, one understands the following conclusion by Henningsen & Henningsen (2012) regarding CES estimation:

"is generally considered problematic due to convergence problems and unstable and/or meaningless results"

• Remember that the limited sample based estimates were questionable to a large extent (σ <0)

Inference should be made carefully – results indicative rather than conclusive!

A fixed basket in a changing universe – realistic?

- This is actually two questions:
 - 1) a fixed and limited sample based basket, and
 - 2) a fixed census-like/take-all sample based basket (with the caveat of time *)
- Regardless of the results here, the validity of a limited sample can be discussed when measuring effective prices rather than list prices (offer/over-the-counter)
 - (*) The universe of available items is changing
 - The problem in estimations also stems from temporary consumption changes due to price campaigns (or perhaps random effects)

Thank you for your attention!

Can Tongur

can.tongur@scb.se

Statistics Sweden

www.scb.se

The Swedish CPI kpi@scb.se

