A Model Based Approach to Produce Residential or Commercial Property Price Indices

16th Ottawa Group **Meeting** Rio de Janeiro Brazil May, 2019

Paulo Fernando Mahaz Simões Brazilian Institute of Geography and Statistics - IBGE

paulo.mahaz@ibge.gov.br

HIGHLIGHTS

- **Hedonic Double Imputation Laspeyres House Price Indices**
- We Link Sold Properties
- **Create Pseuso Housing Units**
- Calculate Accurate Indices with Reduced Sample Sizes

Plot of our Longitudinal Data ■ Why some prices increase and other decrease?

■ Which factors are related to changes in prices over time?

To answer this questions we apply

Mixed Effects Models

- Interesting technique to analyze longitudinal data because they offer us some prerrogatives:
- a) Analyze individual trajectories
- b) Identify variance components
- c) Predictors that explain intraindividual variance and variance among groups

Linking sold properties · We create PSEUDO HOUSING UNITS 0 1 2 3 4 5 6 J Time Table 1 - Prices of properties (US\$)



Methodology

- We define a fixed sample (S) 60 Specific Properties.
- We specify the Model Ex: To Calculate Results for Jan/2016
- We estimate Model coefficients taking into account data from the last 24 months
- Generate Predict Values for each property in the sample for Dec/15 and Jan/2016
- Calculate the Index for Jan/2016 $\hat{I}^{Jan16} = \frac{\sum \hat{P}_{icS}^{Jan16}}{\sum \hat{P}_{i.c}^{Dex15}}$

Model

■ Size, Month, Condo Characterístics, Neighbor (Zip Code), Distance to the sea;

 $Y_{ij} = \beta_0 + b_{0i} + \beta_1 T_{ij} + b_{1i} T_{ij} + \beta_2 B_i + \beta_3 P C_{ij} + \beta_4 D_{ij} + \epsilon_{ij}$ $b_{0i} \sim N(0, \sigma_0^2)$ $b_{1i} \sim N(0, \sigma_1^2)$

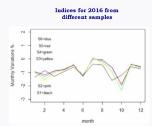
 $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$

Model Estimation

	Variable	Coef	Estimates	sd	p-value
neighborhood	Intercept	β_0	6378.54	685.37	0.000
	Month	β_1	-40.89	6.68	0.000
	Area1 Barra	β_2	-	-	-
	Area2 Bonsuc	β_2	-2818.75	790.40	0.000
	Area3 Freg	β_2	-1459.82	988.11	0.145
	Area4 Olaria	β_2	-2945.64	1098.70	0.009
	Area5 Penha	β_2	-2788.51	903.31	0.003
	Area6 Ramos	β_2	-3579.34	840.71	0.000
	Area7 V. Pen	β_2	-2650.61	902.64	0.005
condo characteristics	Pad Cond 1	β_3	-	-	-
	Pad Cond 2	β_3	461.29	251.66	0.000
	Pad Cond 3	β_3	1160.72	270.71	0.000
	Pad Cond 4	β_3	1917.37	375.06	0.000
		0		667.27	0.000
	Pad Cond 5	β_3	4394.90	007.27	0.000
	Dist Mar longe	β_4	4394.90	-	-
Sea distance					
Sea distance	Dist Mar longe	β_4	-	-	-

Hedonic Double Imputation Laspeyres Price Indices 6 different Sample Sizes

Mês	S1	S2	S3	S4	S5	S6
Jan	-1.3616	-1.2257	-0.9809	-0.9678	-0.9665	-0.9399
Fev	-0.8593	-0.8289	-1.7305	-1.5259	-1.2960	-1.1849
Mar	-1.2923	-1.2788	-1.0337	-0.9837	-0.9106	-0.8921
Abr	-0.9461	-0.9675	-0.7374	-0.8255	-0.7968	-0.7808
Mai	-0.6097	-0.3694	-0.3694	-0.4981	-0.4772	-0.4240
Jun	-1.2654	-1.2507	-1.2477	-1.3173	-1.2772	-1.2045
Jul	-0.3982	0.1136	0.0307	0.0897	0.0275	-0.0115
Ago	-0.4451	-0.3675	-0.2513	-0.2249	-0.1297	-0.0572
Set	-1.5931	-1.6205	-1.1224	-0.9200	-0.6637	-0.6117
Out	-1.1872	-1.2907	-1.7590	-2.3445	-1.9898	-1.8832
Nov	-0.5819	-0.6782	-0.4999	-0.3636	-0.4039	-0.3805
Dez	-0.7385	-0.6300	-0.6215	-0.6777	-0.5903	-0.5849
Acum:	-10.7215	-9.9261	-9.8645	-10.0846	-9.0894	-8.6112



Bootstrap Confidence Intervals for Sample S6

Month	Variation	Lower	Upper
	(%)		
Jan/16	-0.93997576	-1.0850158	-0.79493576
Fev/16	-1.18498173	-1.8455017	-0.52446173
Mar/16	-0.89217714	-1.0489771	-0.73537714
Abr/16	-0.78083960	-0.9905596	-0.57111960
Mai/16	-0.42403444	-0.6788344	-0.16923444
Jun/16	-1.20455500	-1.5397150	-0.86939500
Jul/16	-0.01156223	-0.3173222	0.29419777
Ago/16	-0.05720701	-0.3806070	0.26619299
Set/16	-0.61173888	-1.1605389	-0.06293888
Out/16	-1.88321976	-2.6201798	-1.14625976
Nov/16	-0.38051861	-0.6196386	-0.14139861
Dez/16	-0.58491403	-0.7652340	-0.40459403

Concluding Remarks

- We calculate Quality Adjusted
- Longitudinal models allows more accurate results than other methods with the same sample
- Results based on transaction prices
- We are analysing alternative data sources and methods (Using Appraisal Prices)

Appendix

Mixed Effects Models

Extension of a standard linear model: $Y_{ij} = \beta_0 + \beta_1 X_{ij} + b_{0i} + b_{1i} X_{ij} + \epsilon_{ij}$ Matrix Notation: $Y_i = X_i \beta + Z_i b_i + \epsilon_i$ We can specify distributions: $b_i \sim NMV(0, \Sigma_i)$ $\varepsilon_i \sim NMV(0, R_i)$ $R_i = \sigma_i^2 h_n$ (cov Structure given by: $Z_i \Sigma_i Z_i' + R_i$. Intraindividual Variance: (R_i) Between Variance: $(Z_i \Sigma_i Z_i')$ PS: Covariance Pattern Models (CPMs): $Y_i = X_i \beta + \varepsilon_i$, where $c_i(X_i) = 0$.

 $cov(Y_i) = \Omega_i$

References

processors and Statistics, 73(1):05-58.

Discort, W. E. (2009). The pairs one-dist workshop on real estate prior indicate Conclusions and future directions. In Prior and Productivity Measurement, substant 611, pages 57-116.

Soncy, R. E., Hu, H., Mayer, W. J., and chen Wang, H. (2010). Behorie versus repeat-sole bounding prior indicate for measuring the recent bound-bust cycle. Jearnal of Hessing Execution, 1973.

C., Zheng, S., Geliner, D., and Liu, H. (2014). A new approach for constructing price indices: The pseudo repeat sales model and its application in china. *Journal orange Economics*, 25(Supplement C):20 – 38.

oy thraveray Economics, 23(Supplement C) 20 – 28. Hookker, D. and Gilbone, R. D. (2006). Longthistinal Data Analysis. Wiley Series in Perkadulity and Suistation. Asks Ways & Sons, Inc. Kints, J. F., and Quigley, J. M. (1970). Measuring the value of horoing equility. Journal of 6th Astronous National Association (ASS)(2005):232–548.

Nagaraja, C. H., Brown, L. D., and Zhao, L. H. (2011). An autoeogressive app. house price modeling. Ann. Appl. Stat., 5(1):124-149.

Sheer, M. and Graf, B. (2014). Conversaid Property Price Indicase: Publicus of Sparse Data, Spaint Spaltowers, and Weighting. IMF Working Papers. INTERNATIONAL MONETARY FUND.

Wang, F. T. and Zorn, P. M. (1997). Estimating house price growth with repe