Webscraping prices to estimate hedonic models and extensions to other predictive methods

Ottawa Group Rio de Janeiro May 2019

Context

Data collection and treatment

Subset selection and price prediction methods

Hedonic replacements

Conclusion and further work

01

Context

Price collection for electronic goods in France

- Data collection is performed manually, in physical stores and on the Internet
 - Representativity of different types of stores matters: geographic stratification involves 1pt difference on the CPI from december to april
- We use a fixed basket
- Webscraping is a very interesting source of data, especially for this type of goods:
 - More and more products are sold on the Internet
 - Detailed information on the products, lower cost of collection
- Experiments have been lead on webscraping, mostly for transports
 - Automatic data collection is in production for airplane tickets and maritime transportation
 - We still have to set a general organisation and infrastructure for further use of webscraping in production → we will first use manually collected data with models estimated with webscraped data

Hedonic models and innovative goods

- Importance of taking innovation into account, because it is a major driver of prices
 - New types of products
 - New technical characteristics
 - Improvement of technical characteristics
 - Impact on the price of products already on the market
- Hedonic models can help us measure the technical improvement of electronic goods
- Hedonic re-pricing is preferred in France, and currently in use for household products, because:
 - Easier to check the robustness of the model
 - · Fewer statistical analysis are needed
 - For webscraping, no need to have a production infrastructure, only need to gather data at the base month

Goal: using webscraped data efficiently to estimate the difference in quality

- This involves :
 - Getting data from the websites
 - · Cleaning data: from raw data found on the description pages to data sets which can be used for statistical needs
 - Extracting relevant information from these data sets
 - · Estimate the price of the good from its technical characteristics → hedonic models, or any type of predictive method
- Hedonic repricing will be used to adjust the base month price:
 - $P_0'(X_k) = P_0(X_k).f(Y_k)/f(X_k)$, where f is the quality function linking the technical characteristics to the price
 - log(f) is linear in the hedonic regression case, but we could use other prediction methods

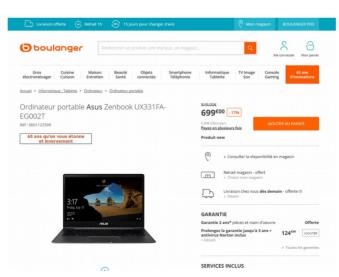
02

Data collection and treatment

Data collection and treatment

Data collection

- Data was webscraped from four ecommerce websites; the detailed product page provides information on the technical characteristics
- Scraping was done in Python by statisticians; we still need to figure out how to organise the work between stat and software teams if we do webscraping in production
- Each website has a common page structure for all types of goods, which limits the development costs



Les points forts		
• 13,3° (33,8 cm) - 1,1 kg		
Intel Core i5-8265U : 1,6 GHz ; Turbo 3,4 GHz / 6	o de mémoire cache	
SSD 256 Go (en PCi-Express)		
Mémoire vive 8 Go		
Pour plus d'informations		
Usage : Polyvalent / Multimédia		
Moniteur		
Taille de l'écran : 13,3 pouces		
Equivalence : 33,8 cm		
Résolution de l'écran : 1920 x 1080 pixels		
Type de charnière : 360°		
Webcam intégrée : Webcam VGA		
Microphone intégré : Oui		
Logiciels		
Système d'exploitation : Windows 10		
Version: 64 Bits		
Office : Microsoft Office 365 (version d'essai gra	ite de 30 jours)	
Processeur (CPU)		
Référence et spécificités : Intel Core i5-8265U :	5 GHz : Turbo 3,4 GHz / 6 Mo de mémoire cache	
Carte vidéo (carte graphique)		
Contrôleur graphique : Intel HD Graphics 620		
Compatible VR : Non compatible VR		
Mémoire vive		
Capacité totale : 8 Go		
Type: DDR4		
Taille de la mémoire (Max) : 8192		
Stockage		
Capacité du SSD : 256,0 Go (capacité maximale	l appareil. La capacité finale disponible peut être inférieure)	
Port du SSD : PCI Express		
Lecteur de carte mémoire : Oui		
Compatibilités : Micro SDXC		
Lecteur / Graveur		
Type : Pas de lecteur-graveur		
Connexion		
Carte réseau filaire : Vitesse 10/100/1000 Mbps		
Wifi (+ d'infos) : 802.11 ac		

Cleaning data

- We get raw data, we must first transform them to make them useable:
 - Remove technical characteristics with too many missing values
 - Harmonise the format, the levels of discrete variables, the units for continuous ones, transform text into numbers, etc.
 - Detect anomalies
 - Imputate missing values
- → webscraping can make it easier to get data for many types of products, but
 - We have to set a general canvas of treatment
 - We must adapt it to the specificities of each product → modularity
- We have to be careful because some websites mix their products with other sellers, or mix new and repackaged products
 - Some categories even contain a few products which have nothing to do with the other ones!

Many information on the website... what is relevant?

- There are many technical characteristics available, but our price collectors will not be able to collect them all
- Even in the case of webscraping in production, we want to limit the number of variables in the case of hedonic models,
- → We have to select the ones which can predict the price
 - Using sectorial expertise/intuition can be a first step
 - Automatic selection through statistical analysis can be more efficient, especially if we want to apply it to many products

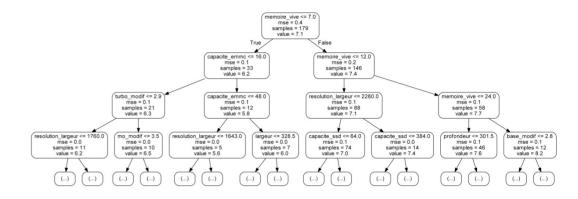
Variable selection and price prediction methods

Variable selection and price prediction

- We want to select a subset of our variables...
- We also want to predict prices with the technical features of the good
 - → some statistical learning tools do both!

Random forests

- Decision trees split the data set at each node, into subsets minimizing the intraclasses variances
- The most relevant features are at the top



- At the bottom of the tree, each cell makes a prediction for observations satisfying conditions of each of the upper nodes (e.g. screen size < 15 inch)
- Among tree-based methods, random forests average several estimators, each one coming from a sample
 of the original data (sampling observations and variables)
- We can cut the tree at a defined level to get only the most influential nodes
- The trees can be used for prediction, variable selection and variable transformation

LASSO regression

 LASSO (least absolute shrinkage method) is a regression with penalization of the coefficients

$$\min_{\alpha_1, ..., \alpha_p} \sum_{i=1}^n (y_i - \alpha_0 - \sum_{j=1}^p \alpha_j x_{i,j})^2 + \lambda \sum_{j=1}^p |\alpha_j|$$

- The L1 penalization cancels some coefficients, as opposed to the ridge regression (L2)
- We can choose to have more or less non-zero coefficients by making λ vary
 - For prediction purpose, we prefer to use **cross- validation**

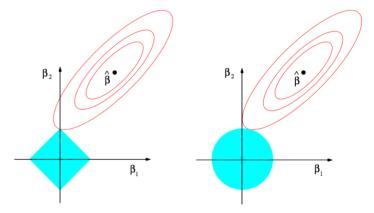


FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Source: Hastie, Tibshirano, Friedman, *Elements of Statistical Learning*, Springer

Results for variable selection

- Random forests show that for laptops, the RAM is the most relevant feature (importance around 73% in the trees), followed by the frequency (base and boost) of the processor
 - Other variables selected: dimensions, cache size, weight, resolution, screen size, brand (Apple)
- Random forests provide more stable results (with respect to the website and the collection date) than LASSO
- AIC or BIC stepwise selection could also be used

Prediction

- Predictive approach :
 - Define a training set, to be split in to subsets in the case of cross-validation
 - Compare models using :
 - mean squared error
 - mean average error
 - accuracy = 1 MAPE (mean average percentage error) → easier to use
- RF can predict the price with an accuracy around 85%
 - Up to 89% if we include the model of graphics card, but difficult to use when new models appear
- LASSO has lower accuracies
- These models usually perform better on the log of price (but we always evaluate the prediction on the price)

Hedonic replacements

Use of hedonic models

We want to reprice our product at base month, using :

$$P_{j,t=0} \cdot \frac{f(X_k)}{f(X_i)}$$

where j denotes the replaced product, and k the replacing product, and f is the function:

$$\exp(a+b_1,x_1+b_2,x_2+...+b_n,x_n)$$

coming from the model:

$$\log(P) = a + b_1 x_1 + b_2 x_2 + ... + b_n x_n + \varepsilon$$

- We plan to apply the model to data collected in stores
 - → we assume that the difference in quality has a comparable effect on the price of different stores, even if the products are priced differently in the different stores

Use of hedonic models

- Linear models provide good accuracies, around 84%
- Accuracy drop when we combine data from different websites
- R-squared > 0.9
- On the webscraped data, price change estimates were computed using bridged overlap and these hedonic models → results are close, work to be continued throughout the year!

	March/January with basis month = January	April/March with basis month = March
Bridged overlap	95.8	98.3
Hedonic model	96.3	98.5

05

Conclusions and further work

Conclusion

- Webscraping can provide detailed information about technical characteristics, and help us estimate hedonic models
- Statistical learning models, such as random forests, can be useful for selecting relevant variables quickly
 - → quickly expand the scope of hedonic models to many products, without too much analysis
- They can perform better than traditional hedonic models and could be interesting to use, combined with webscraping in production
 - However, the gain in accuracy is not very important
 - Possible bias?

Some ongoing developments include:

- Testing our models over a longer period
- Using random forests and LASSO predictor to adjust for quality, and compare them to the log-linear model and to (bridged) overlap
- Testing generalized additive models with cubic splines
- A better treatment of missing values (stratified hotdeck)
- Outlier detection → estimating the models without aberrant observations, and selecting replacing products more carefully
- Extension to other electronic goods

Thanks for your attention!

insee.fr

INSEE

Price Consumer Index Division