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1. Introduction
Accurate and efficient inflow forecasting is cru-

cial for optimizing hydropower scheduling. A range
of physical, conceptual, and empirical models have
been developed to address this need [1]. These mod-
els support effective water resource management
and help mitigate risks related to water availabil-
ity and flow [2]. Inflow forecasting models can be
broadly categorized into (1) physical and conceptual
models, (2) empirical or data-driven models, and (3)
hybrid models.
Physical models use equations to describe water

system dynamics, while conceptual models simplify
these dynamicswith assumptions. Both are complex
but provide accurate, interpretable results when cal-
ibrated. Empirical models, including statistical and
machine learning approaches, forecast inflows us-
ing historical data and can capture complex patterns
but lack physical interpretability. Post hoc methods
can offer explanations, but these models don’t have
a true physical basis for their predictions.

2. Objective
Inflow forecasting has becomemore complex due

to climate change and human activities [3], making
simple empirical models inadequate and requiring
frequent recalibration of physicalmodels. Advanced
machine learningmodels canhandle these complex-
ities but often lack explainability. There is a trade-
off between accuracy, efficiency, and explainability
in forecasting models, and for high-stakes applica-
tions, both accuracy and interpretability are essen-
tial. Therefore, it’s important to developmodels that
balance capturing complex dynamics with being in-
terpretable.
The primary goal of this study is to develop and

validate a novel hybrid model for reservoir inflow
forecasting that integrates the strengths of physi-
cal hydrological principles with advanced machine
learning techniques. This model aims to over-
come the inherent trade-offs between accuracy, ef-
ficiency, and explainability that characterise exist-
ing forecasting approaches. By leveraging the ro-
bust theoretical underpinnings of physical models
and the dynamic pattern recognition capabilities of
machine learning, our hybrid model seeks to pro-
vide highly accurate forecasts whilemaintaining the
interpretability essential for strategicwater resource
management. This approach addresses the increas-
ing complexity and uncertainty in inflow patterns
driven by climate variability and anthropogenic fac-
tors, offering a scalable solution adaptable to diverse

hydrological contexts. The ultimate objective is to
enhance decision-making in hydropower schedul-
ing and water management through improved fore-
cast reliability and deeper insights into the forecast-
ing process itself.

3. Methodology
In the proposed hybrid architecture, the physi-

cal component is represented by the HBV model [4]
[5], while themachine learning component is imple-
mented using Long Short-TermMemory (LSTM) lay-
ers. The HBV model, a widely used conceptual hy-
drologicalmodel in Scandinavia, is employed to sim-
ulate the runoffprocess. Among the various versions
of the HBV model, this study utilizes the lumped
HBV version. Since the hybrid model is developed
in Python, a surrogate version of the HBV model is
used to facilitate integration.
The HBV model consists of several submodules,

each representing a different hydrological process,
including the snow routine, soil moisture routine,
response function, and routing routine. The model
takes inputs such as precipitation, temperature, and
evaporation, processes them through hydrological
equations in each module, and outputs the runoff
corresponding to the subsequent time step. Each
submodule contains parameters that are estimated
through model calibration.
This HBV-ML hybrid approach allows for the de-

velopment of various hybrid architectures by select-
ing different modules for replacement and tuning
the neural network components. Through detailed
analysis, the optimal architecture is selected—one
that effectively balancesmodel performance and ex-
plainability, ensuring both accurate predictions and
interpretability of the underlying processes. In the
final proposedhybrid architecture, the snowmodule
and routing routine of the HBV model are replaced
with LSTM and CNN layers. The soil moisture mod-
ule is kept as such as in the HBVmodel, which mod-
els the process inside the soil system physically and
contributes to the physical explainability of the hy-
brid model.
In our review of published literature on hybrid in-

flow forecasting methods, most existing hybrid ap-
proaches either utilize simulated data from physi-
cal models to train empirical models or employ ma-
chine learning techniques to correct errors in phys-
ical model predictions. This highlights the novelty
of our approach, which uniquely combines physical
hydrological informationwith neural network layers
within a unified model architecture. By structuring



the model into distinct modules and training it as a
single unit, we achieve integration of physical and
data-driven methodologies.
An additional key feature of this approach is the

flexibility to define the parameters of the physical
module based on user input, rather than exclusively
calibrating them from data. This allows the model
to quickly and efficiently adapt to new systems with
known physical parameters, offering a significant
advantage when transferring the model to different
hydrological contexts or regions.
The hybrid model is trained using daily inflow

data collected from January 1982 to October 1994.
The dataset is split into 70% for training, 10% for val-
idation, and 20% for testing. Once trained, the hy-
bridmodel is evaluated, and its performance is com-
pared against two benchmarks: simulations from
the HBV Light model and predictions from a stan-
dalone LSTMmodel.

4. Results
All models were evaluated using NSE, MAE,

and RMSE. The hybrid model significantly outper-
formed the physical HBV Light model and showed
slightly better performance than the standalone
LSTM model. While increasing complexity could
further improve accuracy, the focus herewas on bal-
ancing performance with interpretability, so sim-
pler neural network layers were used. Compared
to the pure LSTM model, the current hybrid model
achieved similar or slightly better results, with the
added benefit of physical interpretability, making it
more practical for hydrological applications. Test
predictions are plotted against observed data in the
figure below, and evaluation metrics are summa-
rized in the table. Ongoing work on hybrid model
optimization may further enhance performance.

4.1 Figures and tables
The model performance comparison is summa-

rized in Figure 1 and Table 1. Figure 1 illustrates
the comparison of forecasted inflow by the physi-
cal, LSTM, and hybrid models on the test dataset,
whileTable 1 presents theNSE (Nash–Sutcliffemodel
efficiency coefficient), MAE (Mean absolute error),
andRMSE (Rootmean square error)metrics for each
model on the test data.

Fig. 1: Comparison of the hybridmodel’s predictions
on the test dataset with observed values, the phys-
ical HBV Light model, and the LSTMmodel

Table 1: Comparison ofmodel evaluationmetrics on
test dataset

Model NSE MAE RMSE

HBV light 0.3191 0.7077 1.6494
LSTM 0.6187 0.5511 1.2342
Hybrid 0.6254 0.5485 1.2233
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Applied solution techniques for bi-level problems in 

hydropower equivalent estimation 
 
 
 

Large energy system models are trying to simulate each component as detailed as possible 
to understand the system behaviour. Hydropower plays an important role in the energy 
system, as it is able to supply short and long-term flexibility. However, modelling 
hydropower can be challenging, as power stations and reservoirs in big river systems are 

often arranged in cascades, and relevant data may not always be publicly accessible. To 
address this, some models use a so-called "hydropower equivalent," which simplifies and 
aggregates hydropower within a specific region. 
 
There are different approaches to calculating an equivalent. One method relies on the 

geographical location[1] of hydropower stations and reservoirs, while another methods 
using mathematical optimization to determine the best parameter settings through bi-level 
optimization[2]. In this case, the upper level of this problem aims to minimize the difference 
in power production between a given hydropower schedule and the equivalent schedule 
which is calculated in the lower problem. Particle swarm optimization (PSO) has been shown 

to be effective in solving the bi-level problem. The idea behind particle swarm optimization 
is to explore solution space using multiple particles, which then move toward the best-found 
solution in every iteration. Additional measures are implemented to prevent the algorithm 
from moving only into a local minimum, helping it converge toward a global optimum. A 
disadvantage is that a huge number of runs can be required to receive a sufficient good 

results. Additionally in earlier research, it has been shown that adjusting the first parameter 
set from the PSO can improve high price performances, which will increase even more the 

simulation time [3,4]. 
 
In this paper, a hyperparameter optimization algorithm is applied to determine the optimal 

parameters for a hydropower equivalent. Existing software frameworks, such as Optuna[5], 
can be used for hyperparameter optimization. This framework includes various sampling 

algorithms, all of which were tested for their applicability to this problem. In total, two 
different algorithms (Tree-structured Parzen Estimator algorithm, Gaussian process-based 
Bayesian optimization) are analysed in greater depth, as they appeared to demonstrate the 

best performance and applicability. Additionally to using Optuna also a combined method is 
used were the idea is to only use the PSO within a more limited space with already given or 

pre-estimated solutions from the hyperparameter optimisation. 
 

Optuna’s algorithms have demonstrated a significant reduction in computation time 
compared to the PSO algorithm. Additionally, Optuna provides a feature to assess the 
importance of variables, helping to understand the impact of newly introduced parameters. 

The results further show that simple models can achieve the same accuracy as the PSO 
algorithm. However, for more complex equivalent systems, the PSO algorithm offers better 

accuracy. In these cases, a combined method indicates to be the optimal choice. 
 
In conclusion, the PSO algorithm still demonstrates the highest accuracy in more complex 

equivalent systems. However, Optuna and its hyperparameter optimization algorithms offer 
a practical alternative for computing hydropower equivalents, especially for simpler systems. 



 

 

This approach also comes with the advantage of lower simulation time. Furthermore, 
Optuna can identify the most important parameters, leading to a better understanding of 
the equivalent system while also evaluating newly introduced parameters. For example, in a 
multiple station equivalent, it can identify which station parameter are more sensitive to the 

solution, providing new insights for improving equivalent system. 
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Introduction

Hydropower is a clean and renewable energy that allows to produce energy with no air emission polluants. In the
province of Québec, Canada, 99% of the energy produced is from hydropower, making the province a world-wide
leader in hydropower production. The market is regulated by a government-owned corporation whom regulates the
market and the independent producers. Producers such as Rio Tinto own their hydropower production system for
their private benefit and need to manage wisely their systems in order to produce the most out of the available water,
which accounts for 90 % of their total energy needs. To do so, many levels of optimization models are used. On an
operational basis, mid-term and short-term models allow to manage the reservoir levels and the actual production
at each of the hydropower plants. Producers have access to large amounts of historical data on the operations
of their plants. Traditionally, mathematical optimization [2] is used to manage efficiently hydropower plants, but
given the large amounts of data hydropower producers collect, this project aims at predicting the operations of the
power plants based on these data sets.

Objectives

Machine learning has gained attention in recent years in the field of hydropower optimization, especially for the
mid- and long-term models. Few papers address the short-term problem and the main goal of this project is to
predict future hourly water discharges for a system composed of two powerplants. Results are then compared with
a traditionnal Mixed-Integer Linear Problem (MILP) used to solve the short-term hydropower optimization model
based on the efficiency points of the hydropower production functions [1]. One of the main motivations for this
work is that the authors are interested to determine if predicting the operations of the power plants based on past
operations could be viable or realistic, but also to assess the limitations of such an approach for the operations of
a hydropower plant. The LSTM model is chosen since it is effective at capturing long-term dependencies.

Methodology

Two data sets composed of twelve years of data from Rio Tinto are available for this project. The hydropower
system is composed of two powerplants with five turbines each. The data sets contains the following characteristics:
natural inflows, volume, water discharged, water spilled, energy produced and turbine states. In order to predict
future hourly water discharges the following sub-objectives are defined:

1. Prepare the input data The input data is prepared for usage in the LSTM model. Data is available every
2 minutes and must be transformed into hourly data. Also, since the goal of the model is to predict future
water discharges, inflows must be shifted in the future, since the inflows are unknown at the time of making
a prediction. As the powerplants are cascaded, water balance constraints need to be accounted for and this
is done by creating a new feature in the data set that contains water inflows, but also water discharged and
spilled from the upstream plant, for the downstream plant.
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2. Develop a framework to formulate the short-term hydropower problem as a LSTM model. As
the decision from the upstream plant affects the decision for the downstream plant, a framework is developed
to account for the interconnection of the plants. The prediction from the upstream plant is made, then
this decision is given as an input to the second LSTM model for the downstream plant. The LSTM is
an autoregressive Recurrent Neural Network (RNN) that requires training to adjust different parameters
representing the trade-off between short-term and long-term memory. In order to predict a forecast, a
rolling-horizon framework is used to predict a series of future hourly water discharges.

3. Compare results with a MILP. The MILP in [1] is used to compare results with the prediction from the
LSTM framework. As the short-term hydropower problem is formulated using the efficiency points of the
hydropower production functions and that model is validated, comparing the actual operations of the plants
with the two different approaches will allow to assess the limitations of the predictive approach.

4. Compare results with the actual historical operations of the hydropower plants. The results from
the MILP were compared with the historical decisions, therefore, comparing the results of the prediction with
the historical decisions will reinforce the analysis.

Results

The twelve year data set is split in an 80% training set and a 20% validation set. Hence, 84,000 hourly instances
are used for the training set and 20,968 hourly instances for validation. Preliminary results require around 10 hours
to train the model.

Preliminary results of the water discharge, obtained from the validation set are shown in Fig.1.

Figure 1: Water discharges for upstream power plant

Results show that the MILP solution, the LSTM prediction and the actual historical decisions are quite similar.
These results are encouraging since they show that the prediction is not too far off from the historical decisions
and the optimization solution. In this case, the final volumes are also quite close, but in practice, it is impossible
to impose a final volume for the LSTM model. Therefore, further results will allow to assess the impact of such a
limitation on the predictive model.
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