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What is spatio-temporal data and why to understand it?
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Time-varying Signal



Graph Signals Processing

How to analyze signals defined on graphs so as to uncover
phenomena and identify patterns hidden in the data?



Graph Signals Processing

How to analyze signals defined on graphs so as to uncover
phenomena and identify patterns hidden in the data?

Graph Signal Processing (GSP) has emerged as a main
alternative in this context.



Graph Signals Processing

How to analyze signals defined on graphs so as to uncover
phenomena and identify patterns hidden in the data?

Graph Signal Processing (GSP) has emerged as a main
alternative in this context.

The main idea of GSP is to adapt well stablished signal
processing tools such as Linear Filtering, Fourier, and Wavelet
transforms to the context of graphs.



Graph Signals Processing

Basic Concepts and Notation
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of nodes V = {1;}, edges E = {e;;} linking pairs of nodes 7; and
Tj, and a symmetric weight matrix W whose entries satisfies
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wjj =0 otherwise

wjj indicates how strongly the nodes 7; and 7 are linked.
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The Graph Laplacian
A undirected weighted graph G = (V, E, W) is defined by a set

of nodes V = {1;}, edges E = {e;;} linking pairs of nodes 7; and
T, and a symmetric weight matrix W whose entries satisfies

wij>0 ifEIeijeE
wjj =0 otherwise

wjj indicates how strongly the nodes 7; and 7; are linked.

L=D-W

where D is a diagonal matrix with entries d;; = Y Wi

L is a symmetric positive semidefinite matrix.
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Graph Laplacian

Spectral Decomposition

Eigenvectors of L Eigenvalues of L

: M
ul uz o o o un
An

u A
L=UAU"

0=A <A< <Ay

Eigenvectors are function defined on the vertices of G

u;:V—-_R
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Eigenvectors of the graph Laplacian behaves similarly to
Fourier basis, tending to increase oscillation as the
corresponding eigenvalue increases.
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Graph Laplacian

Eigenvectors of the graph Laplacian behaves similarly to
Fourier basis, tending to increase oscillation as the
corresponding eigenvalue increases.

A — frequencies

u; — basis function
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Graph Fourier Transform

Given a function f : V — R defined on the vertices of G:
The Graph Fourier Transform of f is defined as

n
GFT[f](M) = f(Ar) =< f,u >=} f(i)uy

(i) = |[f = U'f
i=1
The Inverse Graph Fourier Transform is given by

iGFT[f](i) = f(i) =

Zf(/\l uy (i
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Filtering Signals on Graphs



Classical Filtering and Convolution

Convolution



Classical Filtering and Convolution

Convolution
(Fre)x) = [ flx—ngiear
Flf+gl=F-8
Linear Time Invariant Filter

If £ is a linear time invariant filter then there exists a function &

such that
Lf]=fxh



Graph Convolution

The definition of convolution can not be directly applied to
graphs because the shift operation f(x — t) is not well defined
on the graph domain.
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Graph Convolution

The definition of convolution can not be directly applied to

graphs because the shift operation f(x — t) is not well defined
on the graph domain.

However, the GFT allows to define convolution as:

f,.8:V—=R

(f »g) = iGFT[f -]

(f x8) (i) Zf(/\l (A (i)
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Graph Spectral Filtering

L[f] = iGFT[f - h]
L[f] = h(L)f
h(A1)
Llfl=U u'f
hi(An)

=] F = = £ DA
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Graph Spectral Filtering: Smoothing

The design of filters with specific properties is a central issue.

Smoothing a function f:
Find & such that g = L[f] = h(L)f minimizes

argmin{[f —g|* + 78" Lg}

It can be shown that

is the sought solution.
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Laplacian of Gaussian (LoG)

— [SIGNAL} GLoG
—{ZERO-CROSSINGS}—— —{SCORE FILTER

LoG(f) = V?[G xf], G is a Gaussian function

] = =
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Graph Spectral Filtering: GLoG

Laplacian of Gaussian (LoG)

In the context of GSP, the goal is to define & such that
GLoG(f) = h(L)f

The solution is given by

h(A)) = —4m2 A7 exp(0?A?/2)

In the 2D case, the GLoG is equivalent to the LoG filter.
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Spatio-Temporal Data Analysis via GLoG
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Spatio-Temporal Data Analysis
f:VXT—=R, T={tty... ,tu}

Vertex Signal

100

ol

Edge nodes: adjacent nodes where GLoG changes sign
Probability of edge nodes

' | 1 if i is an edge node in time slice t;
1(7i, ) = { 0 otherwise
1 m
pe(t) = = Y I(7y, t)
"4

DQC



Spatio-Temporal Data Analysis

Probability of an observed node configuration:

_ e(Ti) if 1(7;, ) = 1
p(I(ti, 1)) = { ﬁ]_Tpe(Ti) ifI(;, ti) =0



Spatio-Temporal Data Analysis

Probability of an observed node configuration:

p(I(T, ) = { pe(T)

if I(Ti, tk) =
1 —pe(m)

1
ifI(Tl',tk) =0
n
E(ty) = -,

IP(I(Tirk)) log p(I(T;, k))



Spatio-Temporal Data Analysis

Analyzing Taxi Pick ups in Downtown Manhattan
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Analyzing Taxi Pick ups in Downtown Manhattan
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Spatio-Temporal Data Analysis
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Spatio-Temporal Data Analysis
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Spatio-Temporal Data Analysis
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Spatio-Temporal Data Analysis
Analyzing Passerby Robbery in Sao Paulo City

67 Aug 2012

108 Jan 2016




Graph Wavelet Transform
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Continuous Wavelets Transform
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Continuous Wavelets Transform
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must define translation and dilatation operations on graphs.




Continuous Wavelets Transform

t/zs'%x):isv(’it) — W = £ )

Wavelets should satisfies the admissibility condition:

dA <o — |P(0)]* = 0 (band-pass filter)

(M)
A

In order to adapt those concepts to the context of graphs we
must define translation and dilatation operations on graphs.

Moreover, the sought graph wavelet basis must be band pass
filters with particular properties.
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Graph Signal Translation

The shift operation x — a (subtraction of vertices) is not directly
defined on graphs.

However, translation can be seen as a convolution with the
delta function
(Taf)(x) = (f % 0a) (x)

Since F[0;](A;) =< 6, u; >= u(j), we can define graph signal
translation (regarding a fixed vertex 7)) as

(Tif ) (i) = V/n(f * 6;)( fo/\luz(]uz()

The normalizing constant /n ensures that the translation
preserves the mean of the signal.



Graph Signal Dilation

)

) = (Dsf)(A) = f(sA)



Graph Signal Dilation

(D:f)(x) = L(5) = (Bf)(N) =F(s2)

§ is not defined in the graph domain.



Graph Signal Dilation

o~

(D:f)(x) = L(5) = (Bf)(N) =F(s2)

§ is not defined in the graph domain.

But we can define dilation via GFT:

n—1 __
(Dsf) = lZf (sAD)uy
=0



Graph Signal Dilation

o~

(D:f)(x) = L(5) = (Bf)(N) =F(s2)

§ is not defined in the graph domain.

But we can define dilation via GFT:
nfl/\
(Dsf) = ) fsAr)u
1=0

Notice that f(sA;) might not be in the range [0, A,,].
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The property
1. x =
—f(= A
) Flan)
implies that stretching a band-limited function in the spatial

domain shrinks and shifts its spectrum.

wavelet spectra

scaling func%

A complete representation demands to complete the basis with
a low-pass scaling function.



Graph Wavelet Transform

Hammond et al. have shown that the following set of filters
satisfy the shrink and shift property:
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gives rise to a proper scaling function.



Graph Wavelet Transform

Hammond et al. have shown that the following set of filters
satisfy the shrink and shift property:

X2 forx <1
gx)=¢ -5+1lx—6x>+x> for1<x<2.
452 for2 < x

and that 104
) = exp(~ (330"

gives rise to a proper scaling function.

g(sA) and h(A)

15 ':(ﬂ/y(m)

ool ke
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Graph Wavelet Transform

P = Zl:g (sAD)u ()

WIFl(s.) = (£, ) = Eg(sh)f (A)u()

1

Wi
1
“II.IIIII‘[ Low ——— High IIII|IIIJ&

=] F = = £ DA




GWT for Spatio-Temporal Data Analysis



GxH

Joint Space and Time Analysis
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Joint Space and Time Analysis
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Joint Space and Time Analysis

GxH | H

/
gﬁ

(u;, A;) eigenpair of G
(v, px) eigenpair of H

4 |0

[
b

s ]

O |
C

= (U @ vy, A; + Hy) eigenpair of G x H
where ® is the Kronecker product.

This property is extremely useful to make the joint space and
time analysis computationally feasible.



Analyzing taxi pickups
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Conclusions

m GSP is a powerful tool to assist spatio-temporal data
analysis

m The proposed edge detection filter has tuned out to be
quite effective to uncover spatial and temporal patterns

m GWT enables the simultaneous analysis of space and time,
which is hard to be done with other techniques, mainly
when dealing with large data sets.

m Future:

m the use of machine learning to design optimal filters is an
almost unexplored problem

m a better understanding on how space and time individually
contribute to the GWT coefficients is an important issue
(not properly tackled yet).

m very hot topic is the interplay between GSP + Deep
Learning
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