
Workshop on Data Science - Emap/FGV

Spatio-Temporal Data Analytics
via

Graph Signal Processing

Prof. Luis Gustavo Nonato

University of São Paulo - Brazil



Joint Work With



What is spatio-temporal data and why to understand it?



Spatio-Temporal Data Analysis



Spatio-Temporal Data Analysis



Spatio-Temporal Data Analysis





Graph Signals Processing

How to analyze signals defined on graphs so as to uncover
phenomena and identify patterns hidden in the data?



Graph Signals Processing

How to analyze signals defined on graphs so as to uncover
phenomena and identify patterns hidden in the data?

Graph Signal Processing (GSP) has emerged as a main
alternative in this context.



Graph Signals Processing

How to analyze signals defined on graphs so as to uncover
phenomena and identify patterns hidden in the data?

Graph Signal Processing (GSP) has emerged as a main
alternative in this context.

The main idea of GSP is to adapt well stablished signal
processing tools such as Linear Filtering, Fourier, and Wavelet
transforms to the context of graphs.



Graph Signals Processing

Basic Concepts and Notation
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A undirected weighted graph G = (V, E, W) is defined by a set
of nodes V = {τi}, edges E = {eij} linking pairs of nodes τi and
τj, and a symmetric weight matrix W whose entries satisfies

{
wij > 0 if ∃ eij ∈ E
wij = 0 otherwise

wij indicates how strongly the nodes τi and τj are linked.
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A undirected weighted graph G = (V, E, W) is defined by a set
of nodes V = {τi}, edges E = {eij} linking pairs of nodes τi and
τj, and a symmetric weight matrix W whose entries satisfies

{
wij > 0 if ∃ eij ∈ E
wij = 0 otherwise

wij indicates how strongly the nodes τi and τj are linked.

Graph Laplacian

L = D−W

where D is a diagonal matrix with entries dii = ∑j wij.

L is a symmetric positive semidefinite matrix.
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Spectral Decomposition

Eigenvectors of L Eigenvalues of L
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Eigenvectors are function defined on the vertices of G

ui : V → R
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The Discrete Courant’s Nodal Theorem
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Fourier basis, tending to increase oscillation as the
corresponding eigenvalue increases.
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Eigenvectors of the graph Laplacian behaves similarly to
Fourier basis, tending to increase oscillation as the
corresponding eigenvalue increases.

λl −→ frequencies

ul −→ basis function
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Graph Fourier Transform

Given a function f : V → R defined on the vertices of G:

Graph Fourier Transform (GFT)

The Graph Fourier Transform of f is defined as

GFT[f ](λl) = f̂ (λl) =< f , ul >=
n

∑
i=1

f (i)ul(i)→ f̂ = U⊤f

Inverse Graph Fourier Transform

The Inverse Graph Fourier Transform is given by

iGFT[̂f ](i) = f (i) =
n−1

∑
l=0

f̂ (λl)ul(i)→ f = U f̂
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Filtering Signals on Graphs



Classical Filtering and Convolution

Convolution

(f ∗ g)(x) =
∫ ∞

−∞
f (x− t)g(t)dt

F [f ∗ g] = f̂ · ĝ
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Convolution

(f ∗ g)(x) =
∫ ∞

−∞
f (x− t)g(t)dt

F [f ∗ g] = f̂ · ĝ

Linear Time Invariant Filter

If L is a linear time invariant filter then there exists a function h
such that

L[f ] = f ∗ h
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The definition of convolution can not be directly applied to
graphs because the shift operation f (x− t) is not well defined
on the graph domain.
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Graph Convolution

The definition of convolution can not be directly applied to
graphs because the shift operation f (x− t) is not well defined
on the graph domain.

However, the GFT allows to define convolution as:

Convolution on Graphs

f , g : V → R

(f ∗ g) = iGFT[̂f · ĝ]

(f ∗ g)(i) =
n

∑
l=1

f̂ (λl)ĝ(λl)ul(i)
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L[f ] = iGFT[̂f · ĥ]

L[f ] = ĥ(L)f

L[f ] = U
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Graph Spectral Filtering: Smoothing

The design of filters with specific properties is a central issue.

Smoothing a function f :

Find h such that g = L[f ] = ĥ(L)f minimizes

arg min
h
{‖f − g‖2 + γg⊤Lg}

It can be shown that

ĥ(λ) =
1

1 + γλ

is the sought solution.
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LoG(f ) = ∇2[G ∗ f ], G is a Gaussian function
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Graph Spectral Filtering: GLoG

Laplacian of Gaussian (LoG)

In the context of GSP, the goal is to define h such that

GLoG(f ) = ĥ(L)f

The solution is given by

ĥ(λl) = −4π2λ2
l exp(σ2λ2

l /2)

In the 2D case, the GLoG is equivalent to the LoG filter.



σ = 1

σ = 2 σ = 3
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f : V× T → R, T = {t1, t2, . . . , tm}

Edge nodes: adjacent nodes where GLoG changes sign
Probability of edge nodes

I(τi, tk) =

{
1 if τi is an edge node in time slice tk

0 otherwise

pe(τi) =
1

m

m

∑
k=1

I(τi, tk)



Spatio-Temporal Data Analysis

Probability of an observed node configuration:

p(I(τi, tk)) =

{
pe(τi) if I(τi, tk) = 1
1− pe(τi) if I(τi, tk) = 0
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Probability of an observed node configuration:

p(I(τi, tk)) =

{
pe(τi) if I(τi, tk) = 1
1− pe(τi) if I(τi, tk) = 0

Time Slice Entropy

E(tk) = −
n

∑
i=1

p(I(τi, k)) log p(I(τi, k))
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Analyzing Passerby Robbery in São Paulo City
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Continuous Wavelets Transform

ψs,t(x) =
1

s
ψ

(
x− t

s

)
−→ W [f ](s, t) =

〈
f , ψs,t(x)

〉

Wavelets should satisfies the admissibility condition:

∫ |ψ̂(λ)|2
|λ| dλ < ∞ −→ |ψ̂(0)|2 = 0 (band-pass filter)

In order to adapt those concepts to the context of graphs we
must define translation and dilatation operations on graphs.

Moreover, the sought graph wavelet basis must be band pass
filters with particular properties.



Graph Signal Translation

The shift operation x− a (subtraction of vertices) is not directly
defined on graphs.



Graph Signal Translation

The shift operation x− a (subtraction of vertices) is not directly
defined on graphs.

However, translation can be seen as a convolution with the
delta function

(Ta f )(x) = (f ∗ δa)(x)



Graph Signal Translation

The shift operation x− a (subtraction of vertices) is not directly
defined on graphs.

However, translation can be seen as a convolution with the
delta function

(Ta f )(x) = (f ∗ δa)(x)

Since F [δj](λl) =< δj, ul >= ul(j), we can define graph signal
translation (regarding a fixed vertex τj) as

(Tj f )(i) =
√

n(f ∗ δj)(i) =
√

n
n−1

∑
l=0

f̂ (λl)ul(j)ul(i)



Graph Signal Translation

The shift operation x− a (subtraction of vertices) is not directly
defined on graphs.

However, translation can be seen as a convolution with the
delta function

(Ta f )(x) = (f ∗ δa)(x)

Since F [δj](λl) =< δj, ul >= ul(j), we can define graph signal
translation (regarding a fixed vertex τj) as

(Tj f )(i) =
√

n(f ∗ δj)(i) =
√

n
n−1

∑
l=0

f̂ (λl)ul(j)ul(i)

The normalizing constant
√

n ensures that the translation
preserves the mean of the signal.
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Graph Signal Dilation

(Ds f )(x) =
1

s
f (

x

s
) =⇒ (D̂s f )(λ) = f̂ (sλ)

x
s is not defined in the graph domain.

But we can define dilation via GFT:

(Ds f ) =
n−1

∑
l=0

f̂ (sλl)ul

Notice that f̂ (sλl) might not be in the range [0, λn].
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)←→ f̂ (aλ)

implies that stretching a band-limited function in the spatial
domain shrinks and shifts its spectrum.

A complete representation demands to complete the basis with
a low-pass scaling function.



Graph Wavelet Transform
Hammond et al. have shown that the following set of filters
satisfy the shrink and shift property:

g(x) =
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−5 + 11x− 6x2 + x3 for 1 ≤ x ≤ 2

4x−2 for 2 < x
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and that

h(λ) = γ exp(−( 10λ

0.3λn
)4)

gives rise to a proper scaling function.



Graph Wavelet Transform
Hammond et al. have shown that the following set of filters
satisfy the shrink and shift property:

g(x) =





x2 for x < 1

−5 + 11x− 6x2 + x3 for 1 ≤ x ≤ 2

4x−2 for 2 < x

.

and that

h(λ) = γ exp(−( 10λ

0.3λn
)4)

gives rise to a proper scaling function.

g(sλ) and h(λ)
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Graph Wavelet Basis

ψs,j = ∑
l

g(sλl)ul(j)ul

Graph Wavelet Transform (GWT)

W [f ](s, j) =
〈

f , ψs,j
〉
= ∑

l

g(sλl)f̂ (λl)ul(j)



GWT for Spatio-Temporal Data Analysis
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(vk, µk) eigenpair of H

⇒ (ul⊗ vk, λl +µk) eigenpair of G×H

where ⊗ is the Kronecker product.



Joint Space and Time Analysis

{
(ul, λl) eigenpair of G
(vk, µk) eigenpair of H

⇒ (ul⊗ vk, λl +µk) eigenpair of G×H

where ⊗ is the Kronecker product.

This property is extremely useful to make the joint space and
time analysis computationally feasible.



Analyzing taxi pickups

More than 1.5 million nodes and 2 million edges.
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Conclusions

GSP is a powerful tool to assist spatio-temporal data
analysis

The proposed edge detection filter has tuned out to be
quite effective to uncover spatial and temporal patterns

GWT enables the simultaneous analysis of space and time,
which is hard to be done with other techniques, mainly
when dealing with large data sets.

Future:

the use of machine learning to design optimal filters is an
almost unexplored problem
a better understanding on how space and time individually
contribute to the GWT coefficients is an important issue
(not properly tackled yet).
very hot topic is the interplay between GSP + Deep
Learning



THANKS !!


