Introduction to Urban Data Science Lecture 2

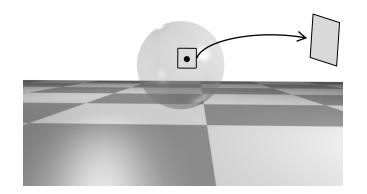
Topological Data Analysis

Harish Doraiswamy

New York University

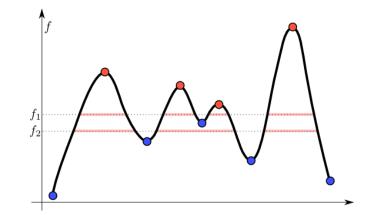
Scalar Function

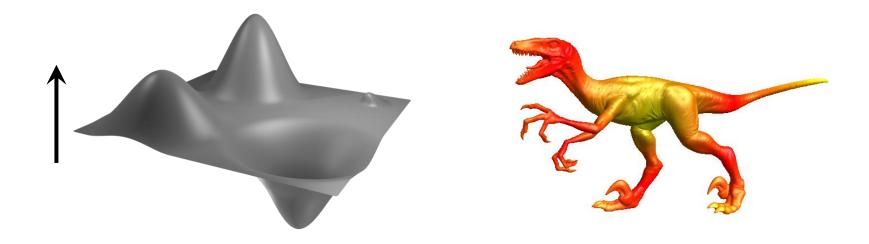
- $f: \mathbb{S} \rightarrow \mathbb{R}$
- \mathbb{S} spatial domain
- *d*-Manifold
 - Neighbourhood of every point resembles \mathbb{R}^d
- 2-Manifold



Scalar Function

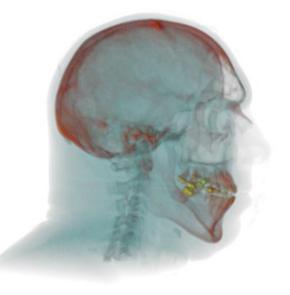
- $f: \mathbb{S} \rightarrow \mathbb{R}$
- $\mathbb{S}-\text{spatial domain}$
- *d*-Manifold
 - Neighbourhood of every point resembles \mathbb{R}^d
 - 1D
 - 2D





Scalar Function

- $f: \mathbb{S} \rightarrow \mathbb{R}$
- $\mathbb{S}-\text{spatial domain}$
- *d*-Manifold
 - Neighbourhood of every point resembles \mathbb{R}^d
 - 1D
 - 2D
 - 3D



Level Set

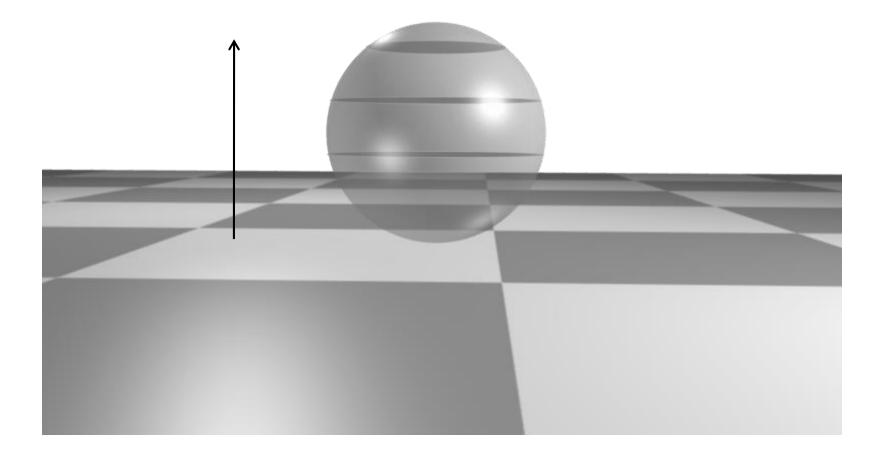
Level Set

- f ⁻¹(r)
- r real number

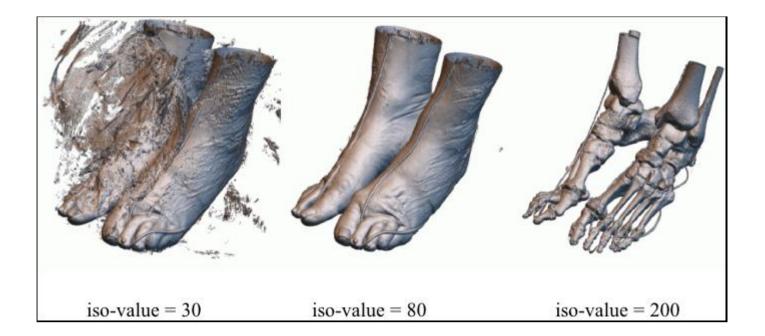
The set of all points having the same function value

- Isocontour
 - 2D surfaces
- Isosurface
 - 3D volumes

Level Sets



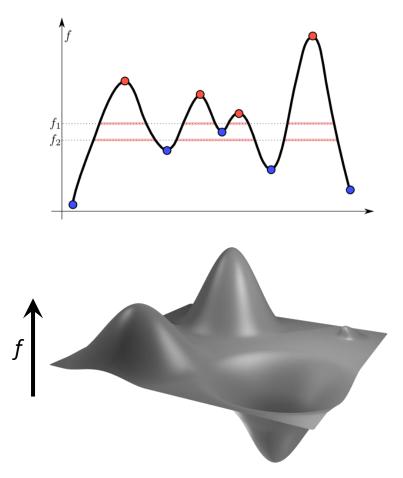
Level Set



[Image: Contour Spectrum, Bajaj et. al.]

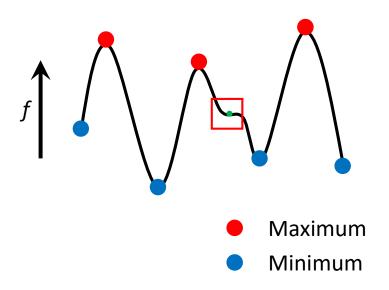
Scalar functions

- $f: \mathbb{S} \rightarrow \mathbb{R}$
- Gradient
 - ∇f
- Critical Points
 - $\nabla f = 0$
- Smooth function
 - $\nabla^2 f$ exists



Example: 1D

- Critical Points
- Types of critical points
 - Stability
 - 2 types of stability
- Degeneracy
 - Test second derivative

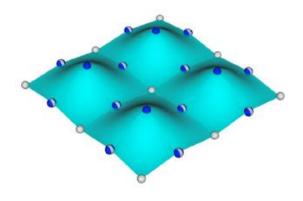


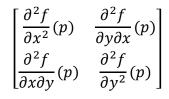
f is a Morse function if it has no degenerate critical points

Example: 2D

- Critical Points
 - $\nabla f = 0$
- 3 types of stability
 - Maximum
 - Minimum
 - Saddle
- Degeneracy
 - Hessian
 - $|\nabla^2 f| = 0$

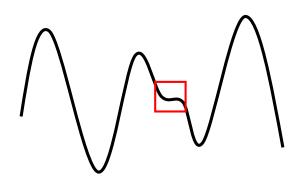
f is a Morse function if it has no degenerate critical points





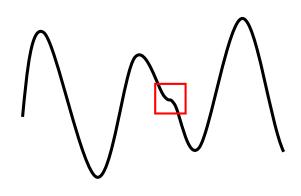
Functions on Manifolds

- Gradient is based on local coordinates
- How to ensure function is Morse
 - Perturbation



Functions on Manifolds

- Gradient is based on local coordinates
- How to ensure function is Morse
 - Perturbation
 - Can be as small as necessary

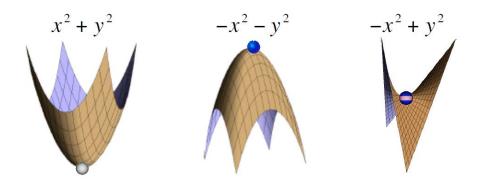


Morse Lemma

Lemma 1.1 (Morse Lemma). Let p be a critical point of a Morse function f defined on a manifold \mathbb{M} . Then we can choose appropriate local coordinates (x_1, x_2, \ldots, x_n) , with p as the origin, in such a way that the function f expressed in terms of the local coordinates has the following standard form:

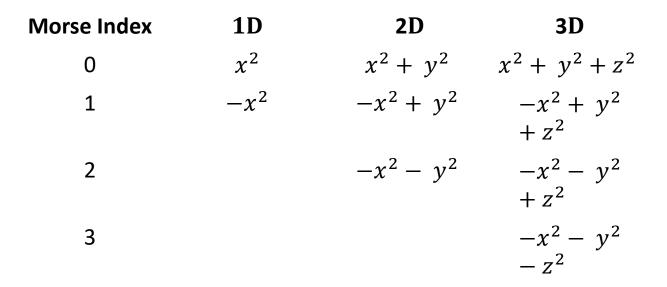
 $f = f(p) \pm x_1^2 \pm x_2^2 \pm \ldots \pm x_n^2.$

- Example: scalar function defined on a surface
- *p* be the critical point
- $f = f(p) \pm x^2 \pm y^2$

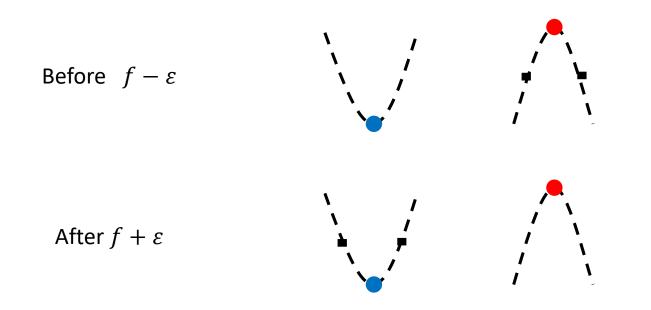


Morse Index

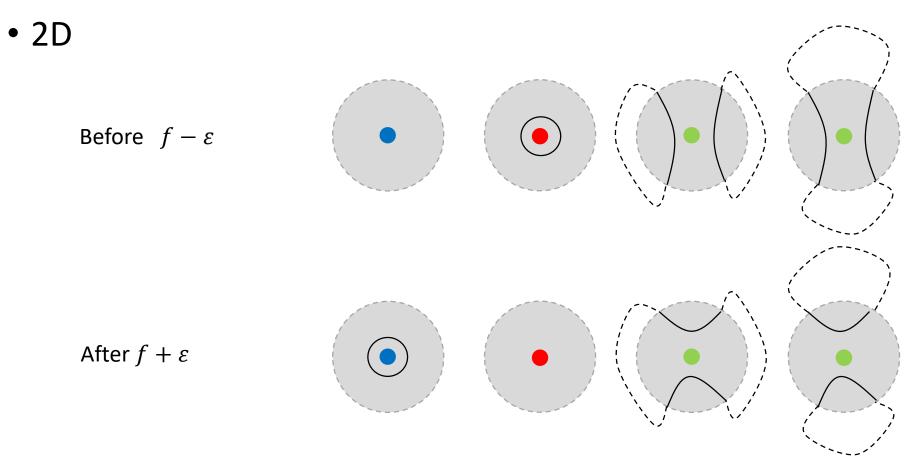
- How many types of instability are there?
- Classify the types of critical points
 - Based on Morse lemma



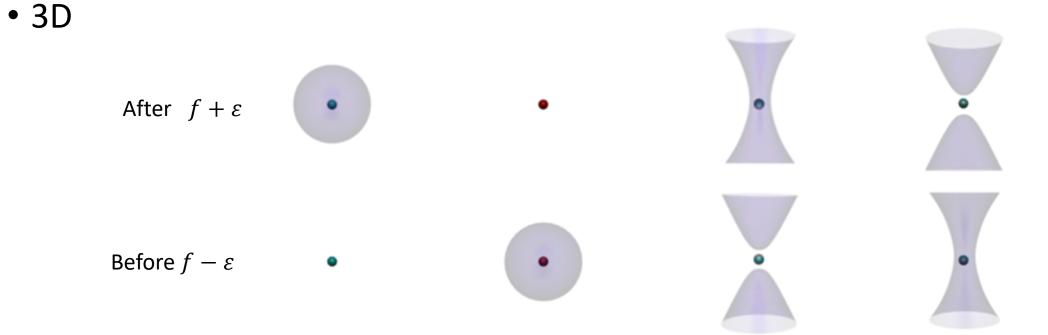
- Classification based on level sets
- 1D



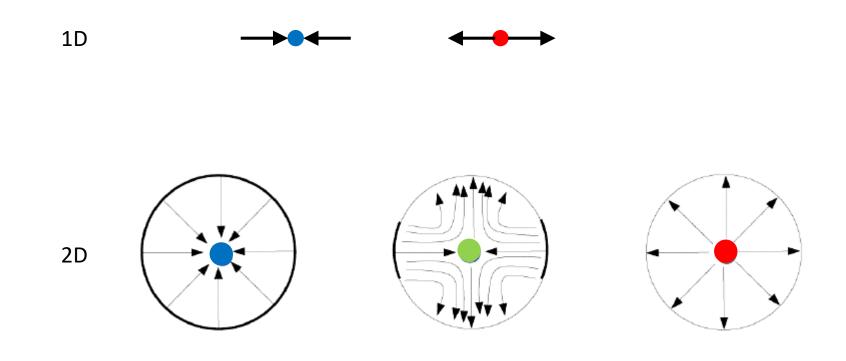
• Classification based on level sets



• Classification based on level sets

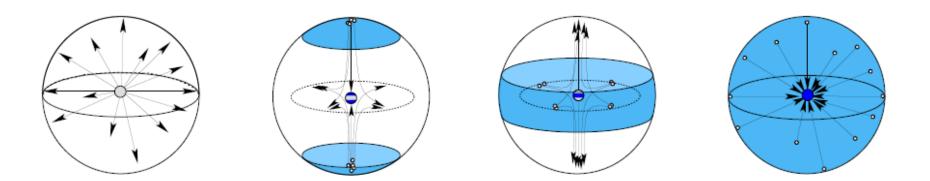


• Classify based on gradient vectors



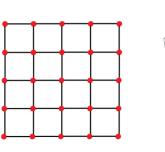
• Classify based on gradient vectors

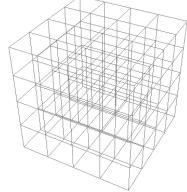
3D

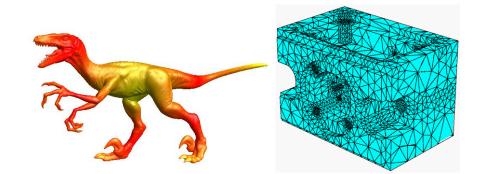


Mesh

- Structured Grid
 - Function values defined on vertices
 - Bilinear / trilinear interpolation within cells
- Simplicial complex
 - Function values defined on vertices
 - Linearly interpolated within simplicies

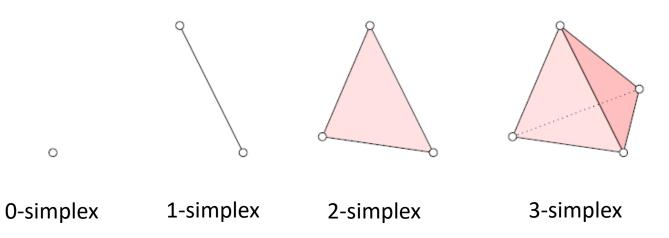






Simplicial Complex

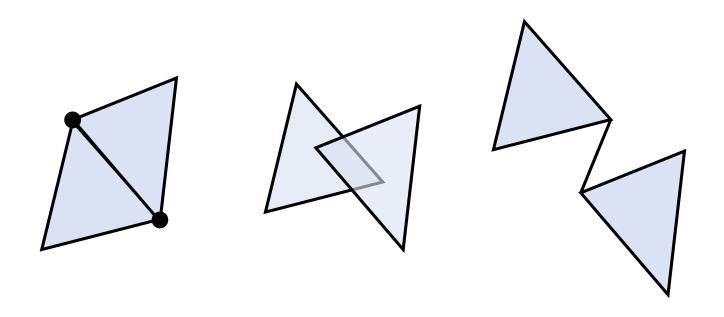
- k-Simplex
 - Convex hull of k+1 *affinely* independent points
- Face of a simplex $\boldsymbol{\sigma}$
 - non-empty subset of the simplex
 - τ ≤ σ



Simplicial Complex

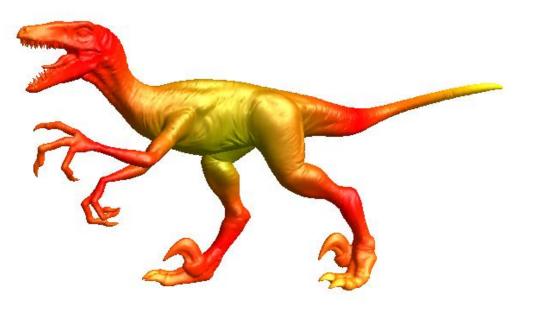
A finite collection of simplicies K such that

- σ in K and $\tau \leq \sigma => \tau$ in K
- $\sigma 1$ and $\sigma 2$ in K => $\sigma 1 \cap \sigma 2$ is either empty or a face in both



PL Functions

- Domain
 - Simplicial complex
- Function defined on vertices
- Linearly interpolated with the simplices



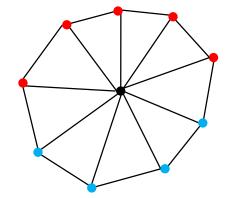
Critical Points: 1D

- How to define neighborhood?
- Adjacent vertices
- Function value < vertex maximum
- Function value > vertex maximum

What about 2D / 3D?

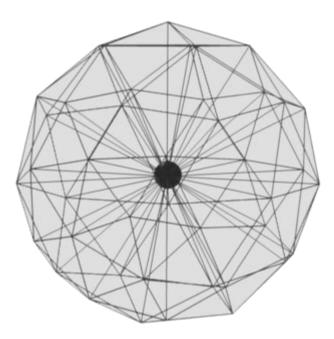
Neighborhood of a Point: 2D

- Star of v
 - Set of cofaces of v
 - $\{\sigma \mid v \leq \sigma\}$
- Link of v
 - All faces of simplicies in the star(v) that is disjoint from v
 - Mesh induced by adjacent vertices
- Upper Link
- Lower Link



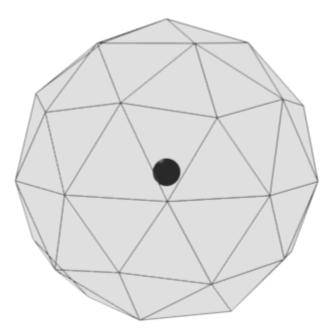
Neighborhood of a Point: 3D

• Star of v



Neighborhood of a Point: 3D

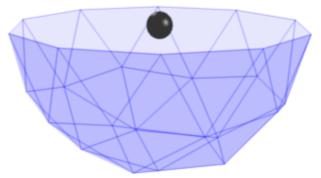
- Star of v
- Link

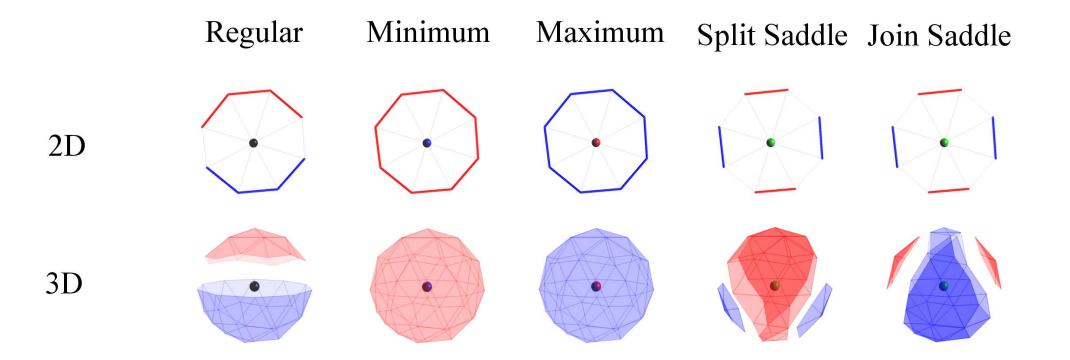


Neighborhood of a Point: 3D

- Star of v
- Link
- Upper Link
- Lower Link

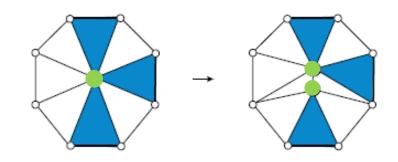






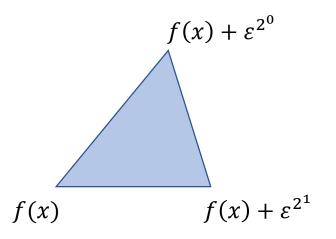
Multi-Saddle

• Split into multiple simple saddles



Degenerate Critical Points

- Simulation of simplicity
 - Edelsbrunner [1, Sec 1.4]
 - Perturbation
- Given *n* points with same function value f(x)
 - $f(v_i) = f(x) + \varepsilon^{2^i}$
 - ε is a infinitesimally small value
- Ensures no 2 points have the same function value
- Total ordering

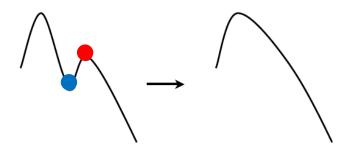


Degenerate Critical Points

• Multiple critical points

CANCELLING HANDLES THEOREM

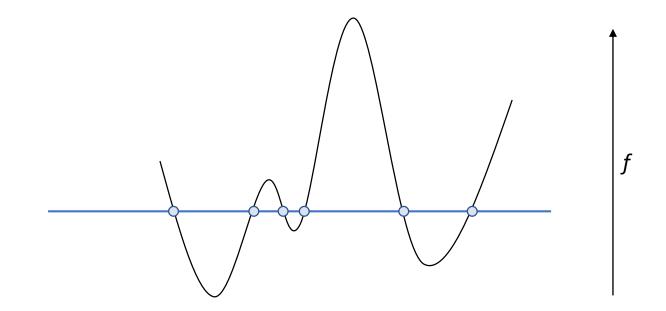
Under certain conditions, a smoother Morse function g can be obtained from f by canceling two critical points that differ in index by 1.



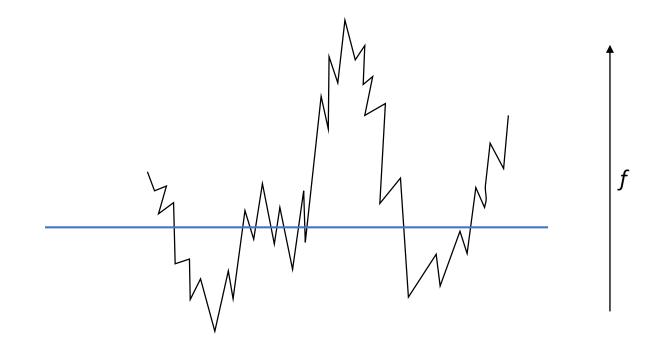
How to choose the appropriate pairs to cancel?

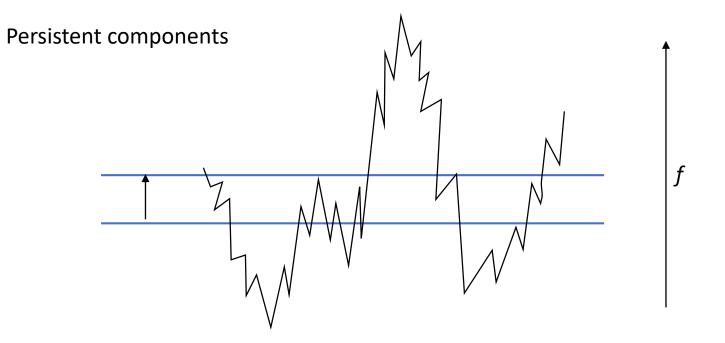
Topological Persistence

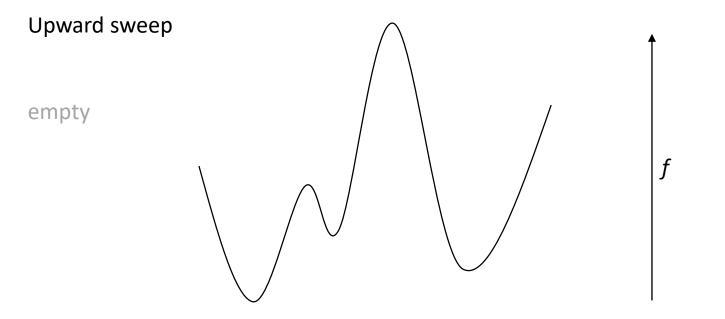
Intuition in 1D

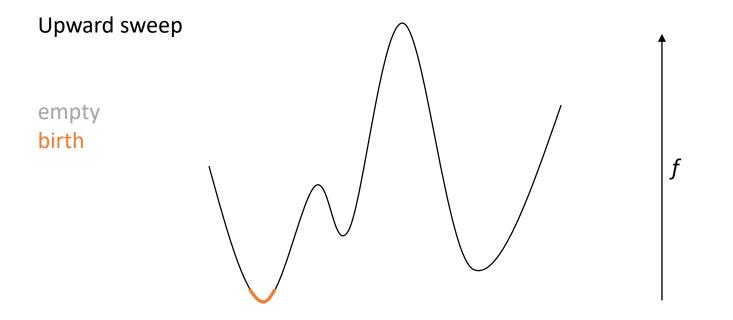


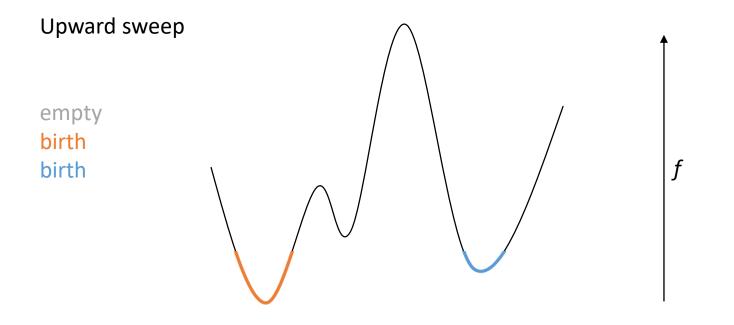
Intuition in 1D

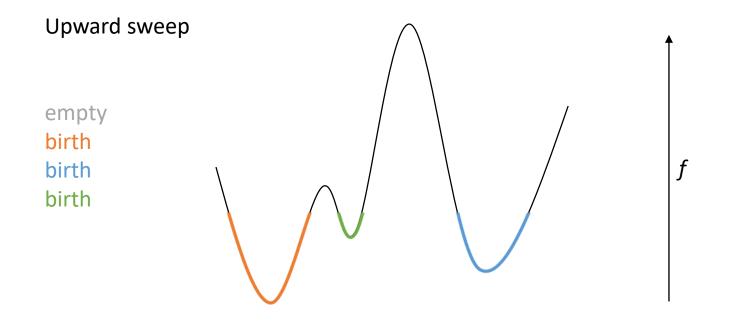


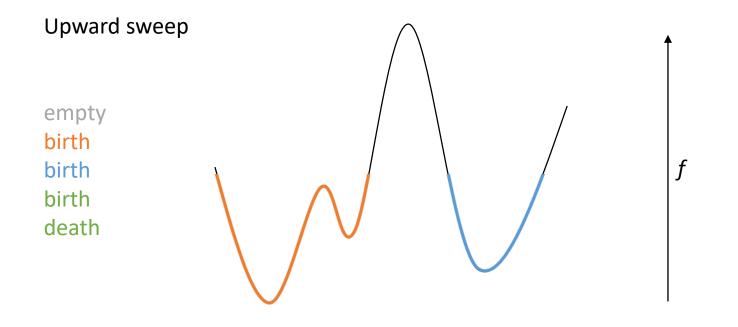


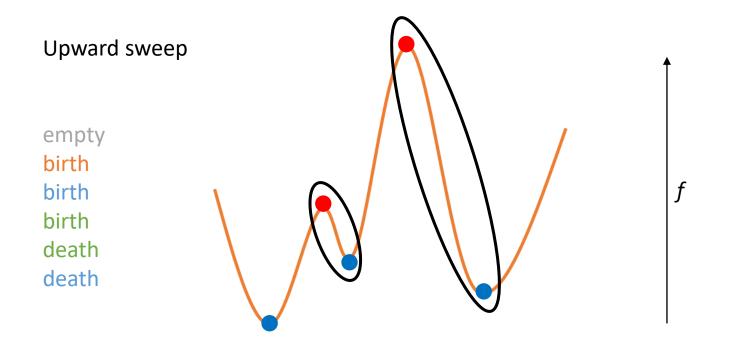




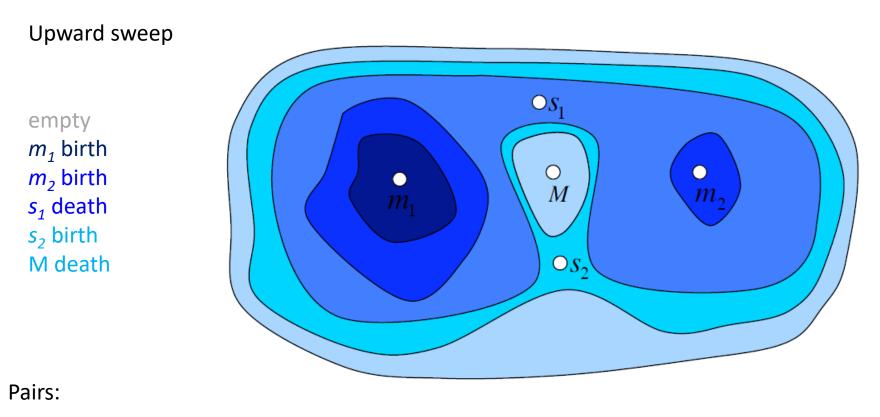






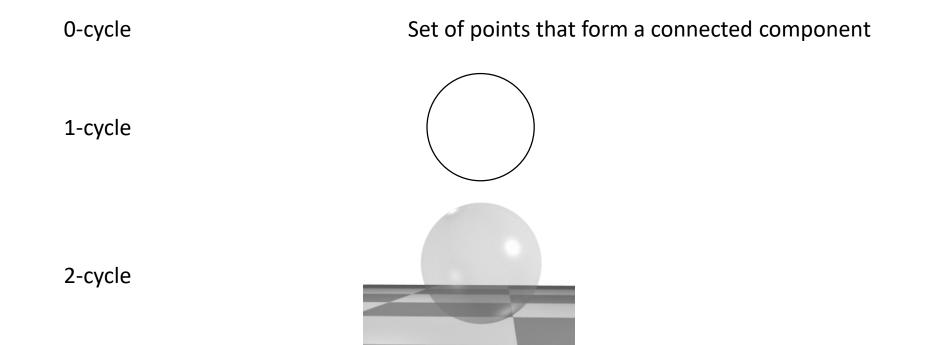


Pair creators with destroyers



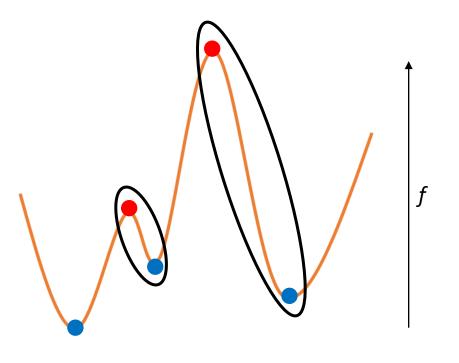
[*m₂, s₁*] [s₂, *M*]

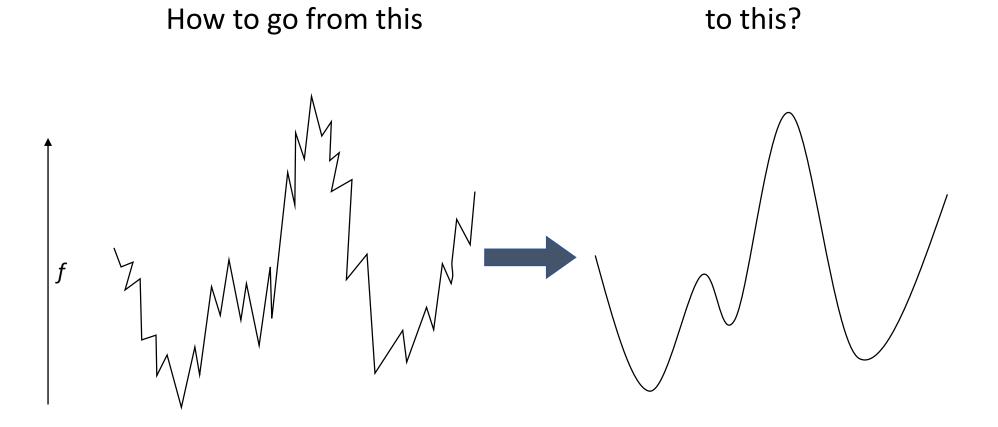
k-cycle



Topological Persistence

- Analogy: Life time of a cycle
- Each cycle has a creator
 - positive simplex
- It is "alive" until it is destroyed
 - negative simplex
- Persistence = age of this cycle
- Pairing the creators with destroyers
 - Youngest creator

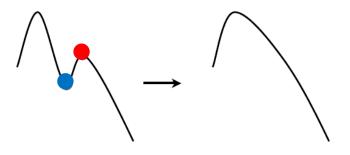




Persistence-based simplification

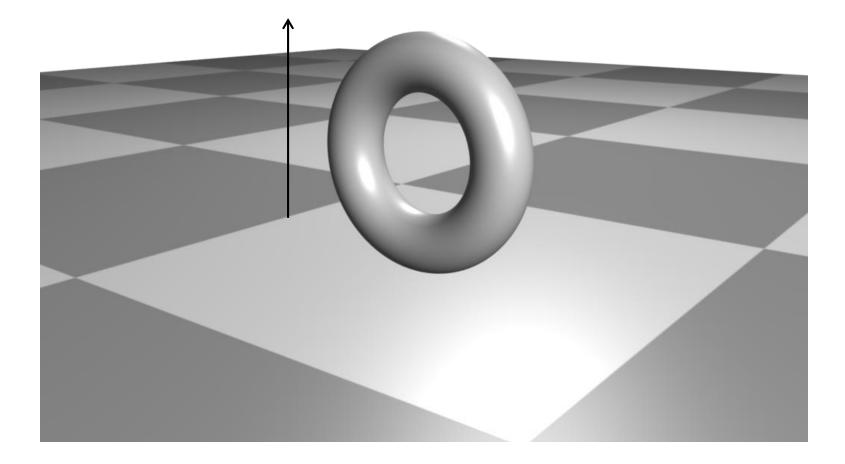
CANCELLING HANDLES THEOREM

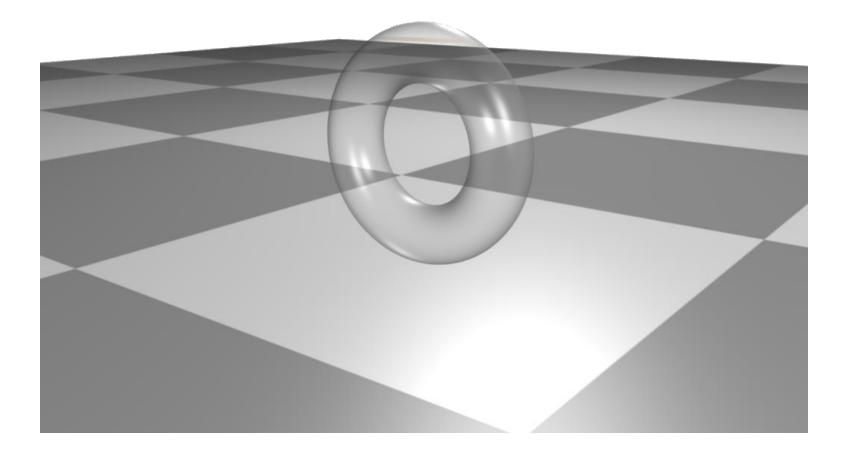
Under certain conditions, a smoother Morse function g can be obtained from f by canceling two critical points that differ in index by 1.

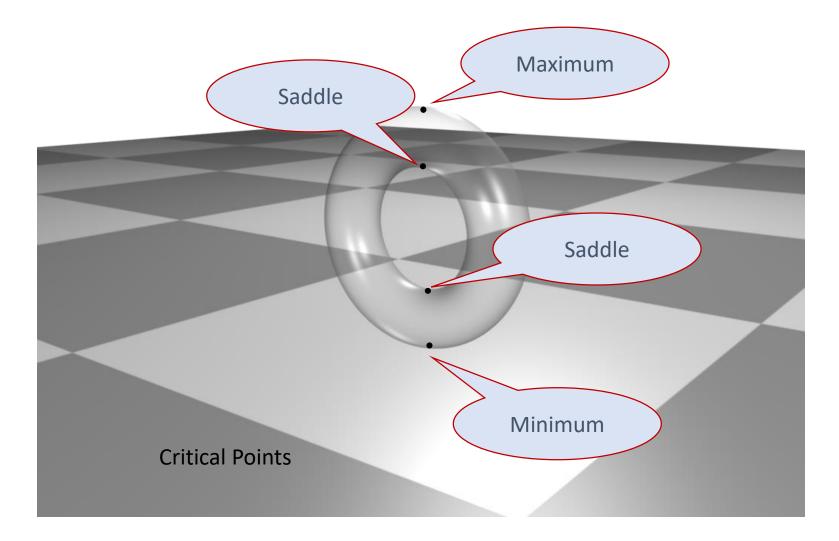


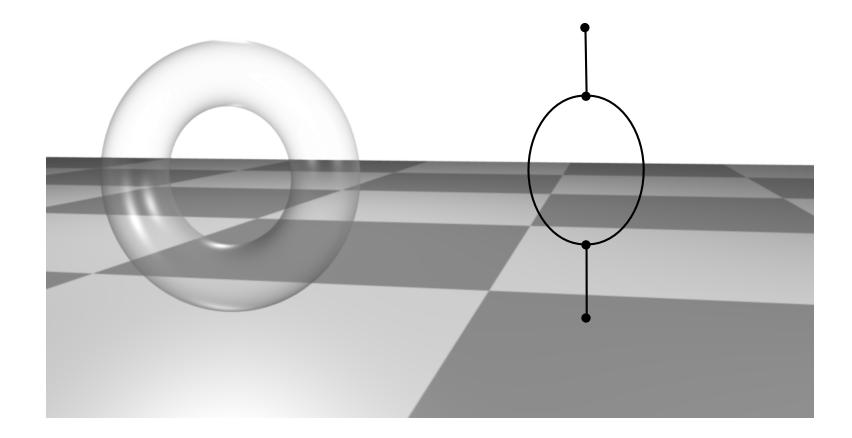
Cancel critical point pairs having low persistence

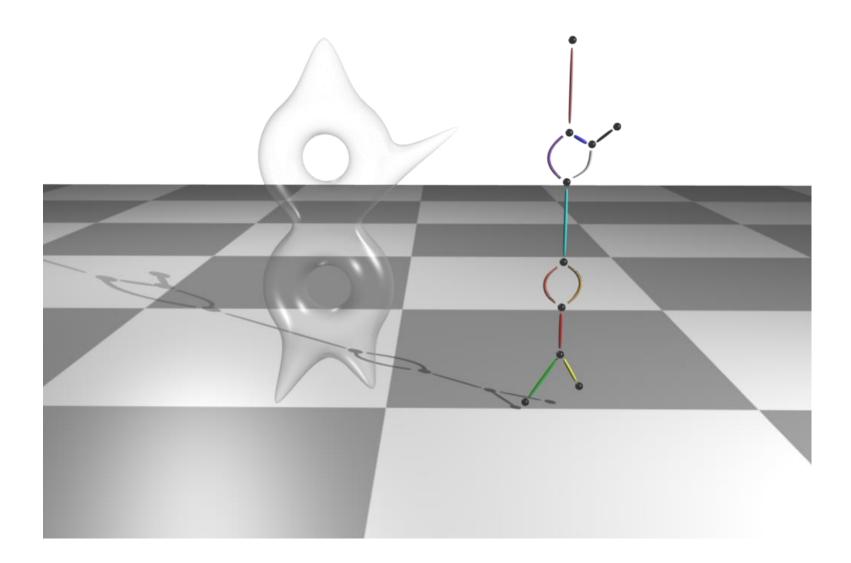
Topology of Level Sets



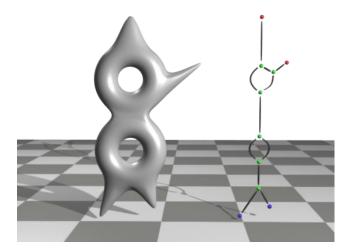


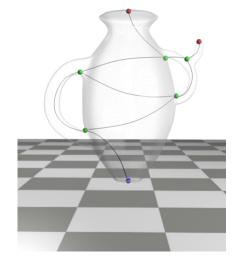


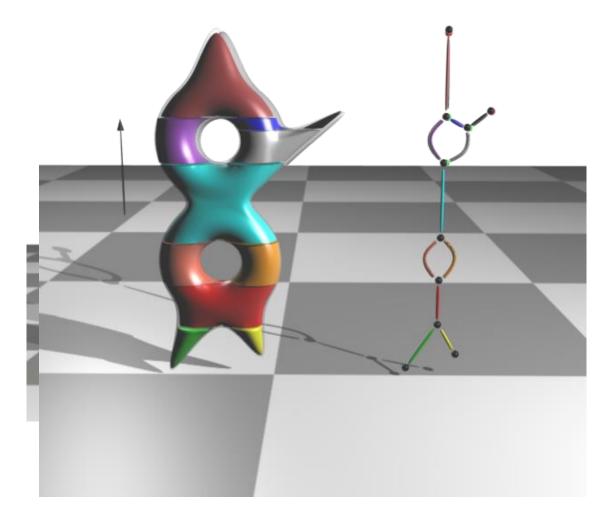




- Tracks the evolution of level-sets with changing function value
- Contract each connected component of a level set to a point
 - Quotient space under an equivalence relation that identifies all points within a connected component

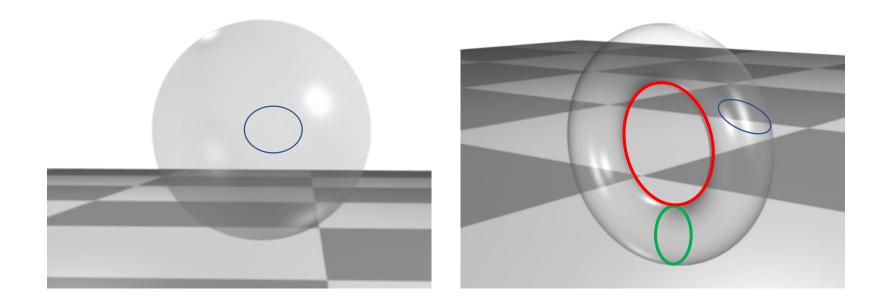






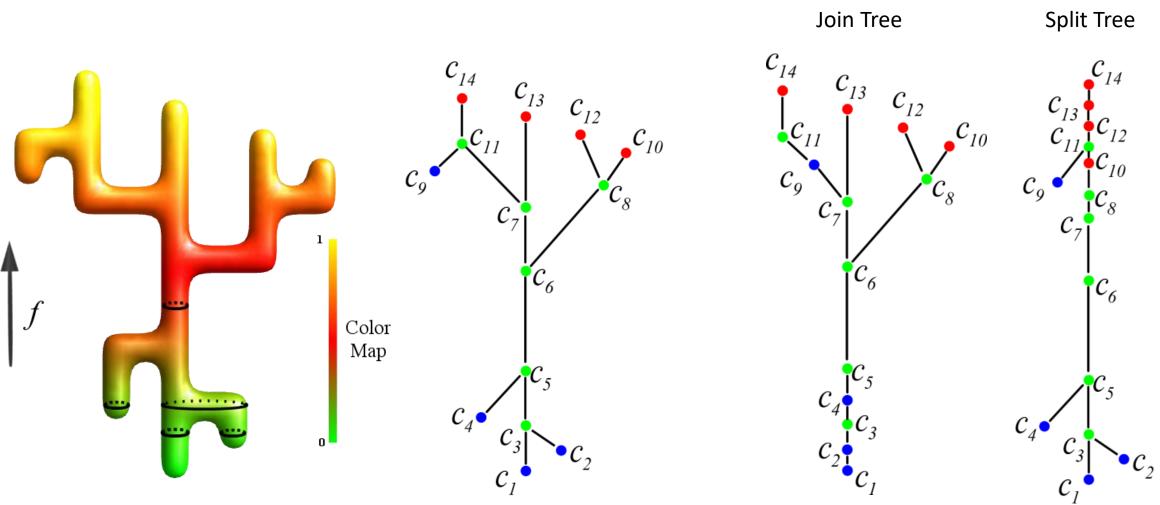
Contour Tree

• Simply connected domain



Contour Trees

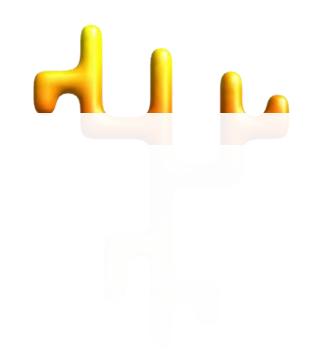
Carr et al. 2003



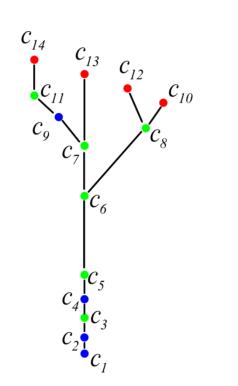
- Sweep from highest function value to lowest
- Track super-level set components
 - $\{v|f(v) \ge \alpha\}$

- Sweep from highest function value to lowest
- Track super-level set components
 - $\{v|f(v) \ge \alpha\}$

- Sweep from highest function value to lowest
- Track super-level set components
 - $\{v|f(v) \ge \alpha\}$

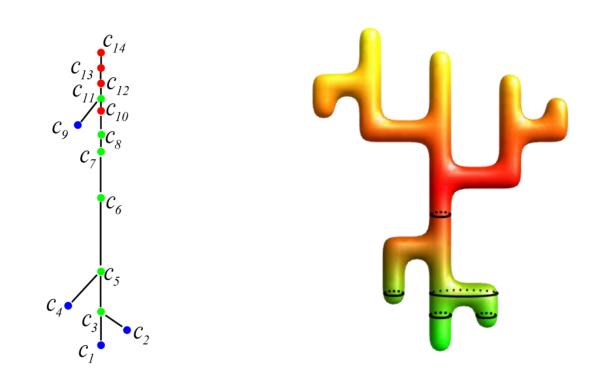


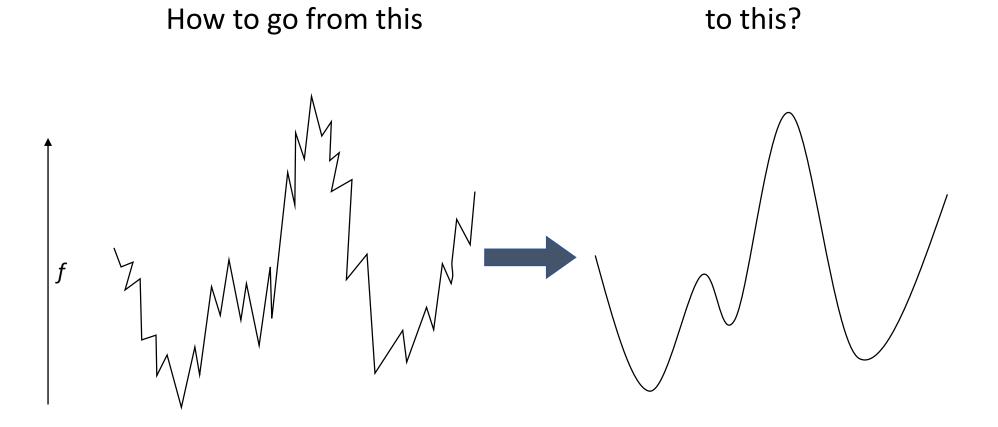
- Sweep from highest function value to lowest
- Track super-level set components
 - $\{v|f(v) \ge \alpha\}$



Split Tree

- Sweep from lowest function value to highest
- Track sub-level set components
 - $\{v|f(v) \le \alpha\}$

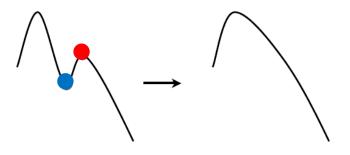




Persistence-based simplification

CANCELLING HANDLES THEOREM

Under certain conditions, a smoother Morse function g can be obtained from f by canceling two critical points that differ in index by 1.

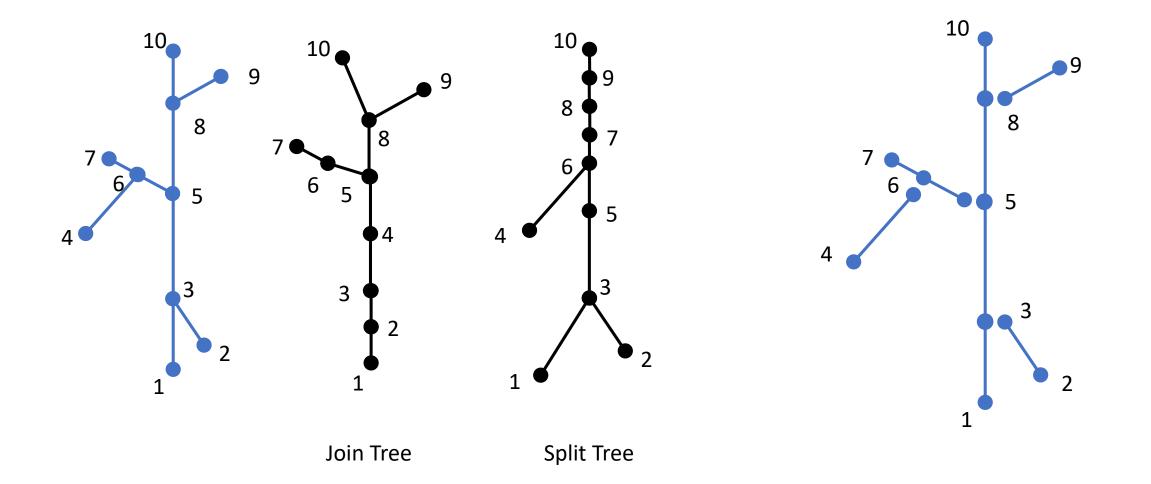


Cancel critical point pairs having low persistence

Using Contour trees for Simplification

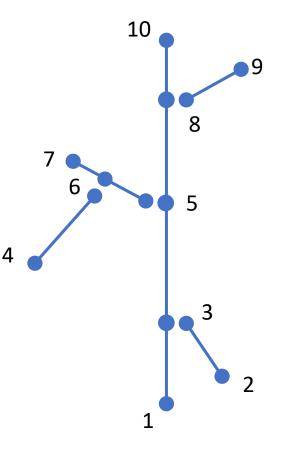
- Branch
 - Monotone path in a graph
 - Defined by the scalar function
- Branch decomposition
 - If every edge in a graph appears in exactly one branch
- Hierarchical branch decomposition
 - Exactly 1 branch connecting 2 leaves
 - All other branches connect 1 leaf with an internal node
- Goal
 - Hierarchical branch decomposition of the contour tree
 - End points of each branch are persistence critical point pairs

Branch Decomposition

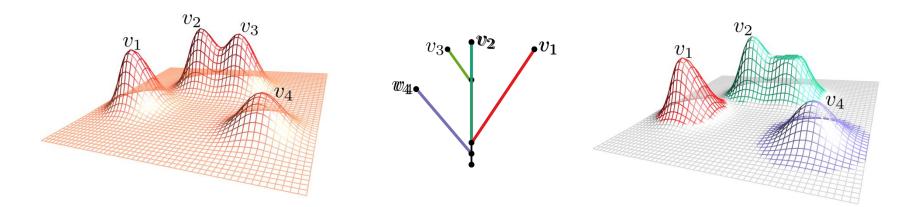


Simplification

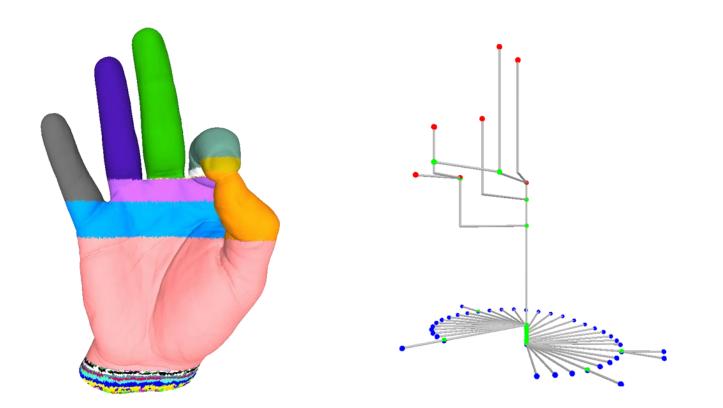
- Parent Child hierarchy
- Branch critical point pair
 - creator-destroyer
 - Persistence = difference in function value
- Keep removing childless branches
 - until persistence of smallest branch is greater than threshold



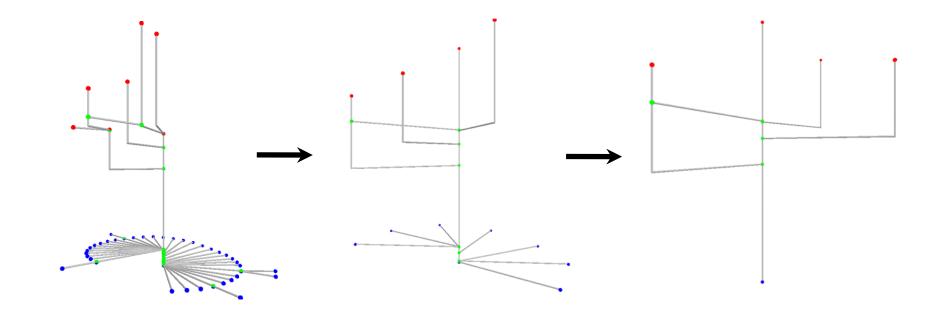
Example



Example: Reeb graph

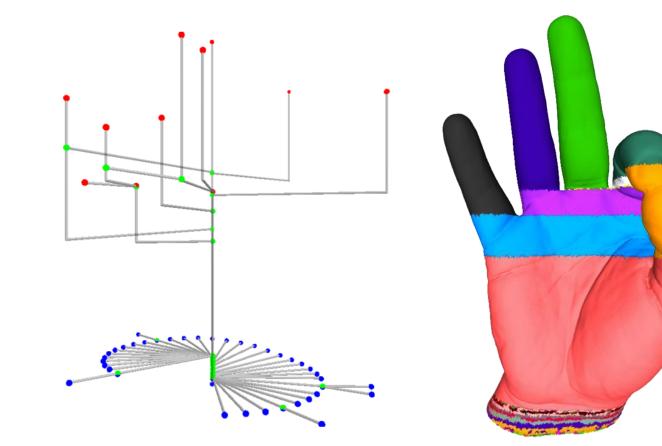


Example: Reeb graph



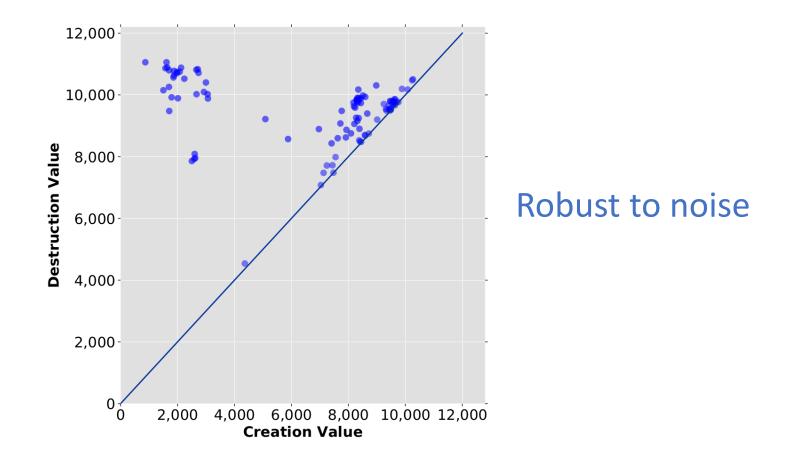
Simplification threshold = 0.005 Simplification threshold = 0.01

Example: Reeb graph



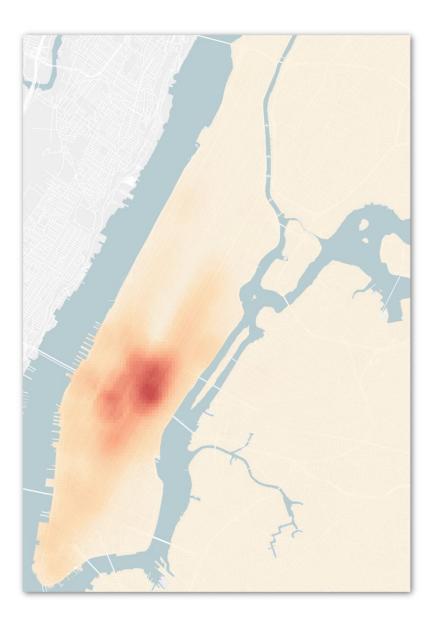
Persistence Diagram

Stability of Persistence Diagrams, Cohen-Steiner et al.



PL Functions

- Domain
 - Area of a city defined as a mesh
- Function defined on vertices
- Linearly interpolated with the simplices



PL Functions on Graphs

- Domain
 - Road network defined as a graph
 - Set of 0- and 1-simplices
- Function defined on vertices
- Linearly interpolated with the edges

References

- 1. Geometry and Topology for Mesh Generation, Edelsbrunner.
- Topology for computing, Zomorodian. Chapter 5 http://www.caam.rice.edu/~yad1/miscellaneous/References/Math/Topology/C omputational/Topology_for_Computing_-_ZOMORODIAN.pdf
- 3. Reeb Graphs: Computation, Visualization and Applications, Harish D. <u>http://vgl.csa.iisc.ac.in/pdf/pub/HarishThesis.pdf</u> Chapter 2
- 4. Topological Persistence and Simplification, Edelsbrunner et al.
- 5. Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree. Carr et al.
- 6. Multi-Resolution computation and presentation of Contour Trees. Pascucci et al.
- 7. Extreme Elevation on a 2-Manifold. Agarwal et al. 2006.