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NYC Taxi Data

* Yellow cab trips
* ~175 million trips / year

* Spatial-Temporal
2 spatial attributes
e 2 temporal attributes

e Other attributes
* Fare, tip
* Distance
* Duration




Analysis: Example
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Goal

Using Topological Analysis to Support Event-Guided Exploration in Urban Data
Harish Doraiswamy, Nivan Ferreira, Theodoros Damoulas, Juliana Freire, Claudio T. Silva
IEEE TVCG 2014

* Guide users towards potentially interesting data slices 2

* What is an interesting data slice?
* Contains an “event”

* Flexible definition of events
* Arbitrary spatial structure
» Different types of events
* Multiple temporal scales

 Efficient search for similar event patterns



Use Topology of the Data
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Use Topology of the Data
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Use Topology of the Data
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Advantage

Use Topology of the Data
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Valleys

1. Naturally captures such features
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l[dentifying Topological Features

8am - 9am Valleys

May 1 2011

5 Boro Bike Tour

[ Advantage ]

2. Features can have arbitrary shapes




Using Topology: Advantages

1. Naturally captures such features

2. Features can have arbitrary shapes

{3. Very efficient

4. Effectively handle noisy data

P U U




Micro Events Macro Events Visual Exploration
Interface
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Macro Events

» Several features per time step

e Group similar features within a larger time interval
* Represents “macro” events
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Macro Events

» Several features per time step

e Group similar features within a larger time interval

* Represents “macro” events
* Similarity ///?'j I
g‘\_\i / :: ....... o

* Geometric similarity: Shape P

* Topological similarity: Volume IE —




Macro Events

» Several features per time step
e Group similar features within a larger time interval

* Represents “macro” events
* Similarity /Z’%/l -
g‘\_\i / :: ....... o

* Geometric similarity: Shape P

* Graph distance metric

[ RiINR
max(|R|,|Rz|)

* Topological similarity: Volume ’/// .

T(E1.Ex) = |11 — 1|

O(Ei,Ex) =1




Macro Events

» Several features per time step

e Group similar features within a larger time interval

* Represents “macro” events
. . . / ]
* Similarity ///ZL/LI 4 .

* Geometric similarity: Shape T

1
[
At

* Topological similarity: Volume | 7 | I=1—1

* Key for each group

* Average shape and volume p
* Efficient search ’/ o




Guiding Users towards Int

* Properties of Macro Events

Timeline View
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Rare Events - Hourly
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Range (Days)

Rare Events - Daily

*October 1 Hispanic Day Parade (Oct 9 2011)
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Frequent Events

* Maxima: Taxi hotspots
* Filter over time
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Event-Guided Exploration

—

Go to Time
slice

5 Borough Bike Tour 2011
(1 May 2011)
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Similarity Search

St. Patrick’s Day Parade 2011
Pulaski Day Parade 2011
Labor Day Parade 2011

# Labor Day Parade 2012

ueny Columbus Day Parade 2012
Hispanic day parade 2012
Veterans Day Parade 2012

Hispanic Day Parade 2011
(9 Oct 2011)



Event Guided Exploration
Hourly Events
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Urban Data

how can we use multiple data sets to understand the city




Objective

How to compare cities?

e Design of public spaces

* Understand what works /
doesn’t work in one city

* Use this to improve design in
another city

Union Square



Objective

How to analyze / compare different properties of a city?

* How do cities behave during
different times?
* Summer vs. Winter
* Weekdays vs. Weekends

Greenwich Village



Urban Pulse
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Urban Pulse: Capturing the Rhythm of Cities

Fabio Miranda, Harish Doraiswamy, Marcos Lage, Kai Zhao, Bruno Goncalves, Luc Wilson,
Mondrian Hsieh, Claudio Silva

IEEE TVCG 2017



Urban Pulse

* Flickr activity in New York City

7:00 am
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Urban Pulse

* Flickr activity in New York City

=
|

7:00 am

» [ 4 ‘
lfs)\:/
Ny

3 as‘

‘ 1.:/

\ev

PTS

[§

)

11:00 am




Urban Pulse

* Flickr activity in New York City
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Urban Pulse

* Flickr activity in New York City
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Urban Pulse: Desiderata

e Capture locations where the pulse is “

the pulse
* Track “activity”

* Temporal resolutions

’”



[ 1. Identify Locations ]

Step 1: Identify Pulse Locations

Maxima




[ 1. Identify Locations ]

Step 1: Identify Pulse Locations

Topological
Persistence




[ 1. Identify Locations ]

Step 1: Identify Pulse Locations

High Persistent
Maxima




[ 1. Identify Locations ]

Step 1: Identify Pulse Locations

* Set of scalar functions over time ="
e Density functions ”E




Handling Temporal Resolutions

* Assume functions are defined along 3 resolutions

Time of Day
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[ 1. Identify Locations ]

Step 1: Identify Pulse Locations

e Set of scalar functions over time

* Density functions < ’;;

* Identify all maxima ) ’F
* Location of prominent pulses ' 1 ;
* is a high persistent maxima in at least N
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[ 1. Identify Locations ]

Step 1: Identify Pulse Locations

e Set of scalar functions over time

o~
\

 Density functions 1 :

. . i

* Identify all maxima e |
* Location of prominent pulses | H
* is a high persistent maxima in at least ‘ | LI

* is a high persistent maxima in at least ) 1
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Step 2: Quantifying Pulse

* 3 Beats to quantify the pulse at each location

e Significant Beats
* |s the location a high persistent maximum?

B _PPQOOO0 0000000060060 00O |

12am 2am 4am 6am 8am 10am 12pm 2pm 4pm 6pm  8pm  10pm

[ 2. Quantify Pulse ]

8am



Step 2: Quantifying Pulse

* 3 Beats to quantify the pulse at each location

* Maxima Beats
* |s the location a maximum?
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Step 2: Quantifying Pulse

* 3 Beats to quantify the pulse at each location

e Function Beats Bf
e Variation of the function values
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Step 2: Quantifying Pulse
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Step 2: Quantifying Pulse
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[ 2. Quantify Pulse ]
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Step 2: Quantifying Pulse
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Urban Pulse Interface
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en Source (BSD License
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Use Case

* Provided the interface to domain experts

e Architects from Kohn Pedersen Fox
e Urban planning

* Human behavioral expert
* Try to understand the cohabitation between cultural communities
e Twitter as proxy for cultural communities



Use Case: Understanding Public Spaces

Rockefeller Center Union Square Bryant Park
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* Typically classified together as being similar



Use Case: Understanding Public Spaces

Rockefeller Center
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Use Case: Understanding Public Spaces

Rockefeller Center
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How to understand features?

1. Why the number of taxi trips is too low? Is this a data quality
problem?

— 70!’ I I I I I I NYC TaXi
Z | Data
(1)) g .




How to understand features?

1. Why the number of taxi trips is too low? Is this a data quality
problem?

2. Why it is so hard to find a taxi when it is raining?

Intélligencer
Why You Can’t Get a Taxi When It’s Raining
By Annie Lowrey W Foliow @AnnieLowrey

http.//nymag.com/daily/intelligencer/2014/11/w
hy-you-cant-get-a-taxi-when-its-raining.html
R

It’s pouring rain. You're running late. You desperately want to take a cab
to the office. But, of course, there are none to be found. Happens all the
time, right? Right, says science — or, to be specific, a new and exhaustive
economic analysis of New York City taxi rides and Central Park
meteorological data.




How to understand features?

1. Why the number of taxi trips is too low? Is this a data quality
problem?

2. Why it is so hard to find a taxi when it is raining?

3. Would a reduction in traffic speed reduce the number of accidents?




Urban Data Interactions

Uncovering relationships between data sets helps us better understand
cities!

Urban Data Sets are very Polygamous!



Data is available...

... but it’s too much work!
Big urban data!

1,200 data sets > 300 data sets 8 attributes
Open Data (and counting) are spatio-temporal per data set

e > 200 attributes

Where to start?
Which data sets to analyze?




Data Polygamy Framework

Goal: Relationship Queries

Find all data sets related to a given data set D

Guide users in the data exploration process
Help identify connections amongst disparate data

@x@

Q: Would a reduction in traffic speed reduce the number of accidents?
Find all relationships between Collisions and Traffic Speed data sets

Q: Why the number of taxi trips is too low? X @
Find all data sets related to the Taxi data set



Challenges

1) How to define a relationship between data sets?
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Challenges

1) How to define a relationship between data sets?

Relationships between interesting features of the
data sets

Relationships must take into account both time and
space

Conventional techniques (Pearson’s correlation, DTW,
mutual information) cannot find these relationships!



Challenges

2) Large data complexity: Big urban data

Many, many data sets !
Data at multiple spatio-temporal resolutions

Relationships can be between any of the attributes

Many attributes!
~2.4 million possible relationships among NYC Open Data alone for a single spatio-temporal
resolution

Qj meaningful relationships needle (n a

haystac?



Key |dea:
Topology-based Relationships



|dentifying Topological Features

* Topological features of the scalar function
* Neighborhoods of critical points

Maxima

Minima



|dentifying Topological Features

* Topological features of the scalar function
* Neighborhoods of critical points

* Neighborhood defined by a threshold




|dentifying Topological Features

* Topological features of the scalar function
* Neighborhoods of critical points

* Neighborhood defined by a threshold

* Positive Features

o

a



|dentifying Topological Features

* Topological features of the scalar function
* Neighborhoods of critical points

* Neighborhood defined by a threshold

* Positive Features




|dentifying Topological Features

* Topological features of the scalar function
* Neighborhoods of critical points

* Neighborhood defined by a threshold

* Positive Features
* Negative Features

* Represented as a set of
spatio-temporal points




Computing Topological Features

* Index: Merge Tree
* Topological data structure
* Tracks evolution of the topology of level sets
e Data can be of any dimension

e Output-sensitive time complexity




Computing Feature Threshold

e Feature thresholds are computed in a data-driven
approach
* Uses topological persistence of the features

 Persistence can be efficiently computed using the merge
tree




Computing Feature Threshold

* Use persistence
diagram |
* Plots “birth” vs o
“death”

* High persistent
features form a
separate cluster

* 2-means cluster

e Use the high persistent “°
cluster to compute the
threshold

10,000~

8,000~

6,000-

struction Value

2,000~

08 2,000 4,000 6,000 8000 10,000 12,000
Creation Value



Relationship Evaluation

» Relationship between features

T




Relationship Evaluation

» Relationship between features
* Related features
* Positive Relationship




Relationship Evaluation

» Relationship between features

* Related features
* Positive Relationship T




Relationship Evaluation

» Relationship between features
* Related features
* Positive Relationship
* Negative Relationship

e Defined w.r.t. features

* Spatio-temporal points that are
features in both functions



Relationship Evaluation

» Relationship between two functions

* Relationship Score (7)
* How related the two functi

e Captures the nature of the
relationship

Negative Relationship




Relationship Evaluation

» Relationship between two functions

* Relationship Score (7)
* How related the two functic

e Captures the nature of the
relationship

* Relationship Strength (p)
 How often the functions are related

Weak Relationship



Relationship Evaluation

 Relationship between two functions

* Relationship Score (7)
* How related the two functions are

e Captures the nature of the
relationship

* Relationship Strength (p)
 How often the functions are related

e Significant relationships

* Monte Carlo tests filter potentially
coincidental relationships




Scalar Functions

* Two types of scalar functions: count and attribute

e Count functions
* Capture the activity of an entity corresponding to the data

* Density function
e E.g.: no. of taxi trips over space and time

* Unique function
* E.g.: no. of distinct taxis over space and time

 Attribute functions
* Capture variation of the attribute
* E.g.: average taxi fare over space and time

* Functions are computed at all possible resolutions



Relationship Querying

* Querying for meaningful relationships

Find relationships between D, and D, satisfying CLAUSE

* Only statistically significant relationships are returned
- CLAUSE Can be used to filtel relationships w.r.t. zand p.

Significantly reduces the number of relationships
the user needs to analyze!

Goal: guide users in the data exploration process !



(Some) Interesting Relationships

1. Would a reduction in traffic speed reduce the
number of accidents?

Collisions  Traffic Speed Things to Know About NYC’s New 25-Miles-

> Per-Hour Speed Limit
@ X By Caroline Bankoff W Follow @teamcaroline

http.//nymag.com/daily/intelligencer/2014/11/th
ings-to-know-about-nycs-new-speed-limit.html

Positive relationship between numb

Positive relationship between numb

7%

2. Why it is so hard to find a t:

Taxi Fare  Precipitation

® X @

Strong pOSItlve relatlonShlp betwee nt Last week, Mayor de Blasio signed a law lowering New York City’s 30-
TaX| d r|Ve rs are ta rget earners ! miles-per-hour speed limit to 25. The change is the centerpiece of de

Blasio’s Vision Zero plan to drastically reduce New York City traffic deaths,
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(Some) Interesting Relationships

3. Why the number of taxi trips is too low?

# Taxis Precipitation
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Negative relationship between number of taxis and average precipitation
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Many more details and experiments in the paper!

Data Polygamy: The Many-Many Relationships among Urban
Spatio-Temporal Data Sets, SIGMOD 2016.

Code, data, and experiments available at:
https://github.com/ViDA-NYU/data-polygamy

Weather data set is the most polygamous!







