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Motivation



What is the motivation to study interpretability?

For me (scientists): Ways to have insights about what is being learned
(curiosity, need new insights).

In general: With the increase in high-stakes decisions (e.g., credit and
justice systems), it raises a lot of questions such as fairness, trust, and
robustness.

Regulation laws: The right to have an explanation (law enforcement,
might incur in penalty).

Material based on the course CS282BR: Topics in Machine Learning Interpretability
and Explainability at Harvard. Lectured by Hima Lakkaraju and lke Lage.

canvas.harvard.edu/courses/68154


canvas.harvard.edu/courses/68154

When do we need interpretability?

"Ad servers, postal code sorting, air craft collision avoidance
systems—all compute their output without human intervention.
Explanation is not necessary either because (1) there are no significant
consequences for unacceptable results or (2) the problem is sufficiently
well-studied and validated in real applications that we trust the system’s
decision, even if the system is not perfect.” [Doshi-Velez and Kim, 2017]

"The demand for interpretability arises when there is a mismatch
between the formal objectives of supervised learning (test set predictive
performance) and the real world costs in a deployment setting.” [Lipton,
2018]

"We argue that the need for interpretability stems from an
incompleteness in the problem formalization, creating a fundamental
barrier to optimization and evaluation.” [Doshi-Velez and Kim, 2017]



Why do we need interpretability?

Hard to measure and quantify properties — often subjective.

e Trust - A person might feel at ease with a well-understood model,
even if this understanding has no purpose.

e Causality - Researchers hope to infer properties (beyond

correlational associations) from interpretations/explanations.

e Informativeness/Scientific Knowledge - understanding the
characteristics of a large dataset.



Why do we need interpretability?

e Fair and ethical decision making - Guard against certain kinds of
discrimination which are too abstract to be encoded. No idea
about the nature of discrimination beforehand. How can we be
sure algorithms do not discriminate based on race?

e Privacy - The model might reveal individual information.

e Mismatched objectives - Often, we only have access to proxy
functions of the ultimate goals

e Multi-objective trade-offs - Competing objectives - Even if the
objectives are fully specified, trade-offs are unknown, decisions
have to be case by case.



Why do we need interpretability?

e Reliability/robustness/safety - End to end system is never
completely testable.
e Transferability/ Training and deployment objectives diverge -

Humans exhibit a richer capacity to generalize, transferring learned
skills to unfamiliar situations

e Environment might even be adversarial - Changing pixels in an
image tactically could throw off models but not humans



Properties



Properties of a interpretable model

e Transparency - How exactly does the model work? Details about
its inner workings, parameters, etc.

e Post-hoc explanations - What else can the model tell me? Eg.,

visualizations of learned model, explaining by example

The explanation for our actions/decisions relies on a transparent or on a
post-hoc explanation?



Properties of an interpretable model - Transparency

The capability of understanding the model itself.

e Simulatability - Is a user capable of understanding the model to
calculate its prediction to a given sample? (e.g., Sparse linear
models, Rule lists, Decision trees)

e Decomposability - Is a user capable of understanding each part of
the model? (each node of a tree, the weight of each linear
parameter).

e Algorithmic Transparency - Is a user capable of understanding,
trusting, or predict the behavior of the learning algorithm? (e.g.,
quadratic optimization in SVM vs. heuristical gradient in neural

networks)



Properties of an interpretable model - Post-hoc

The capability to explain the behavior of the model with other,
post-hoc, processing of the learning process.

e Textual explanation - Learn a textual explanation (given by
humans) of the predictions (humans do that, often after the
decision making).

e Visualization - Usage of visualization tools to see predictions similar
to the studied ones generate perturbations to observe the outcome.

e Local Explanations - Create explanations near to the studied
sample to explain the prediction.

e Example Explanations - Give examples of ground truth samples to
explain the predictions.



Evaluating



Evaluating explainability [Doshi-Velez and Kim, 2017]

More
Specific
and
Costly

Humans 7 Tasks
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Human-grounded Evaluation Hf:qzlns S‘:’Z;ilse
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Figura 1: Taxonomy to evaluation of explainable systems [Doshi-Velez and

Kim, 2017].




Application-grounded evaluation

Real humans (domain experts), real tasks.
Can be tested in real applications with help of a domain expert.

Typical evaluation in HCI and visualization communities.
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Human-grounded evaluation

Real humans, simplified tasks.
The evaluation can be done by real, lay, humans.
It evaluates more general notions of explainability.
Potential experiments:

e Pairwise comparisons.

e Simulate the model output.

e What changes should be made to input to change the output?
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Functionally-grounded evaluation

No humans, proxy tasks.

Appropriate for a class of models already validated. Eg., decision trees,

sparse linear models.

We can do this when a method is not yet mature, or human subject

experiments are unethical.

Potential experiments:

e Complexity (of a decision tree) compared to other other models of

the same (similar) class.

e How many levels? How many rules? How many weights.

12



Evaluating - Experiments




How can we evaluate interpretability? Experiments!

Experiments evaluating the quality of human simulating, trusting, and
detecting on mistakes is a linear regressor [Poursabzi-Sangdeh et al.,
2018|.

Experiment evaluating the impact of the number of Lines, Terms,
Cognitive Chunks, and Repetitions in Response Time, Accuracy, and
Subjective Difficult (attested by the user) [Lage et al., 2017].

13



Linear

models [Poursabzi-Sangdeh et al., 2018]
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systems [Poursabzi-Sangdeh et al., 2018]. 14



Linear models [Poursabzi-Sangdeh et al., 2018]

Factors studied: number of features and the transparency.
Evaluation:

e Capability of simulating the model.

e Trusting the model — how much the prediction deviates when the
model's response is presented.

e Detection of mistakes — how capable was the user of adjusting the
prediction in extreme cases.

Factors and tasks were chosen based on the literature.
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Linear models [Poursabzi-Sangdeh et al., 2018]

Findings:

e Sparse, transparent models are better to simulate the outcome.
And Dense, transparent models are worse than dense black-box
models.

e No significant difference in trusting the model.
e Clear models are worse to detect mistakes.

e User's prediction errors have no significant difference.
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Rule sets [Lage et al.

The alien's preferences:

frowning or raining and puffy eyes and chest pain — laxatives or vitamins and antibiotics

sweating and frowning and raining or anxious —» laxatives and antibioties o stimulants

hoarse and blurry vision and frowning or sweafing — p

squinting or chest pain and raining and sweating — antibiotics or tranquilizers and painkillers
puly eyes and hoarse and blurry vision or anxious — vitamins and antibiotics or tranquilizers

hives and squinting and raining or frowning — trang

and antibiotics

or painkill

Observations: hoarse, blurry vision, puffy eyes Disease Medications:

+ antibioties: Acrove, Adenon.

thoxin

+ painkillers: Poxin, Parola, Pelapin

fipryl, Vyorix, Votasol

+ stimulants: Silvax, Setoxin,
Soderal

- vitamins:

+ tranquilizers: Trasmin, Tydesol,
Texopal
+ laxatives; Lantone, Lezanto,
xerol

would you to treat the alien

Vitamins
Antibiotics
Laxatives
Tranquilizers
Stimulants

Painkillers bubbly or clumsy — brave

faithful and cold or brave and passive — candy or dairy and fruit
( thankful or ( ( walking or faithful ) and negative ) ) and nice — spices and grains

Submit Answer

(a) Overall representation of the system. (b) Representation of the explicit (top)
and an implicit (bottom) cognitive chunk.



Rule sets [Lage et al., 2017]

Study the impact of complexity in the properties of the model.
Evaluated complexity:

e Lines.

e Terms.

e Cognitive Chunks.

e Repretitions.
Properties:

e Response Time.
e Accuracy.

e Subjective Difficult (attested by the user).

18



Rule sets [Lage et al., 2017]

Findings:

"Greater complexity results in longer response times, with the most
marked effects for cognitive chunks, followed by model size, then
number of variable repetitions.”

"Consistency across metrics: subjective difficulty of use follows response
time, less clear trends in accuracy.”
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Creating explainability




Rule Based Approaches [Lakkaraju et al., 2016]

If Respiratory-Illness=Yes and Smoker=Yes and Age> 50 them Lung Cancer
Else if Risk-Depression=Yes then Depression

Else if BMI > 0.2 and Age> 60 then Diabetes

Else if Headaches=Yes and Dizziness=Yes, then Depression

Else if Doctor-

s> 0.3 then Diabetes
Else if Disposition-Tiredness=Yes then Depression

Else Diabetes

If Respiratory-lllness=Yes and Smoker=Yes and Age> 50 then Lung Cancer
If Risk-LungCancer=Yes and Blood-Pressure> 0.3 then Lung Cancer

If Risk-Depression=Yes and Past-Depression=Yes then Depression

If BMIZ 0.3 and Insurance=None and Blood-Pressure> (.2 then Depression
If Smoker="Yes and BMI> 0.2 and Age= 60 then Diabetes

If Risk-Diabetes=Yes and BMI> 0.4 and Prob-Infections> 0.2 then Diabetes

If Doctor-Visits > 0.4 and Childhood-Obesity=Yes then Diabetes

(a) Original

(b) Interpretable

Figura 5: Represetation of the same rule set depicted with two distinct

approaches.




Prototype Based Approaches [Li et al., 2018]
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Figura 6: Representation of prototype based interpretation. 21



Linear & Generalized Additive Models [Caruana et al., 2015]
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Figura 7: Outcome represented by line graphs for single features, and heat
maps for pairwise interaction terms. 22



Explaining Black-Box Models [Ribeiro et al

., 2016]
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Visualizing Model Behavior

Figura 8: Example of our visualization method: explains why the DCNN
(GooglLeNet) predicts "cockatoo”. Shown is the evidence for (red) and against

(blue) the prediction. -



Feature Importance Based Explanations [Kim et al., 2018]
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Figura 9: Quantitative Testing with Concept Activation Vectors: (a) concept

)
vs random samples, (b) studied class (zebras), (c) trained network, (d) linear
classifier, (e) evaluation.
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Actionable Explanations (Recourse) [Ustun et al., 2019]

FEaTURES TO CHANGE  CURRENT VALUES REQUIRED VALUES
n_credit cards 5 — 3
current_debt $3.250 — 51,000
has_savings_account FALSE — TRUE
has_retirement_account FALSE — TRUE

Figura 10: Changes in a sample feature set that change the outcome.
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Causal Models & Explanations [Zhao and Hastie, 2019]
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Figura 11: Representation of causal interpretations. 97



Conclusion




Open Problems: Design Issues

What proxies are best for real-world applications?

What factors to consider when designing simpler tasks in place of
real-world tasks?
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Claims about interpretability must be qualified

If a model satisfies a form of transparency, highlight that clearly.

For post-hoc interpretability, fix a clear objective and demonstrate
evidence.
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Transparency may be at odds with broader objectives of Al

Choosing interpretable models over accurate ones to convince decision
makers .

Short term goal of building trust with doctors might clash with long
term goal of improving health care.

30



Post-hoc interpretations can mislead

Do not blindly embrace post-hoc explanations!
Post-hoc explanations can seem plausible but be misleading.
They do not claim to open up the black-box.

They only provide plausible explanations for its behavior. Eg., text

explanations.

31
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