Visualizing Model Behavior
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Material base on:
- Slides from Julius Adebayo (“Sanity Checks for ‘Saliency’ Maps”)

- Slides from Julius Adebayo & Hima Lakkaraju (“Visualizing Model Behavior”)



Introduction



Recent ML Systems achieve superhuman

Deep Net outperforms humans
AlphaGo beats Go in image classification DeepStack beats
human champ I M 2 G E professional poker players
L e :

Autonomous search-and-rescue
drones outperform humans

Deep Net beats human at
recognizing traffic signs

A
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Computer out-plays
humans in "doom"

IBM's Watson destroys
humans in jeopardy




From Data to Information
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Information (implicit)

Deep Nets / Kernel Machines / ...



From Data to Information
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_§ AlexNet Clarifai VGG GoogleNet ResNet
= (16.4%) (11.1%) (7.3%)  (6.7%) (3.57%)

Performance

for human

Crucial in many applications

S



Interpretable vs. Powerful Models ?

60 million parameters
650,000 neurons

Non-linear model
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We have techniques to interpret and
explain such complex models !



Interpretable vs. Powerful Models ?

Ante-hoc interpretability:

Choose a model that 1s

readily interpretable and
train it.

Example:

contribution
of nth vanable

4 .
f(x) = z gi(xi)
=1

Is the model expressive
enough to predict the data?

Post-hoc interpretability:

Choose a model that works
well in practice, and develop a
special technique to interpret it.

Example:
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f(x) = DeepNet(x)

How to determine the contribution
each input variable?



Dimensions of Interpretability

Different dimensions prediction

of “interpretability” “Explain why a certain pattern x has
been classified in a certain way f(x).”

model

“What would a pattern belonging
to a certain category typically look
like according to the model.”

data

“Which dimensions of the data
are most relevant for the task.”




Why Interpretability ?

1) Verify that classifier works as expected

Wrong decisions can be costly
and dangerous

“Autonomous car crashes, “Al medical diagnosis system
because it wrongly recognizes ..." misclassifies patient’s disease ...”
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Why Interpretability ?

2) Improve classifier

Standard ML Interpretable ML
model/data
improvement
3 <
data data | =
o
O
a
: : =
ML ML : : =
model model |: tability ° g
i %.j .................... N
predictions verified predictions

Generalization error Generalization error + human experience



Why Interpretability ?

3) Learn from the learning machine

“It's not a human move. |'ve o
never seen a human play this Old promise:
move.” (Fan Hui)

“Learn about the human brain.”
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Why Interpretability ?

4) Interpretability in the sciences

Learn about the physical / biological / chemical mechanisms.

(e.g. find genes linked to cancer, identify binding sites ...)
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Why Interpretability ?

5) Compliance to legislation

European Union’s new General

—l “r ° ”
Data Protection Regulation right to explanation

Retain human decision in order to assign responsibility.

“With interpretability we can ensure that ML models
work in compliance to proposed legislation.”
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Techniques of Interpretation

DNN transparency

interpreting models explaining decisions

maximization generation analysis
- Berkes 2006 - Hinton 2006 - Khan 2001 - Poulin 2006
- Erhan 2010 - Goodfellow 2014 - Gevrey 2003 - Landecker 2013
- Simonyan 2013 - v. den Oord 2016 - Baehrens 2010 - Bach 2015
- Nguyen 2015/16 - Nguyen 2016 - Simonyan 2013 - Montavon 2017

focus on model = » focus on data
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Techniques of Interpretation

Interpreting models

(ensemble)

- find prototypical example of a category
- find pattern maximizing activity of a neuron

Explaining decisions

(individual)

- “why"” does the model arrive at this
particular prediction
- verify that model behaves as expected

better understand
internal representation

crucial for many
practical applications
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Techniques of Interpretation

In medical context
» Population view (ensemble)
* Which symptoms are most common for the disease
* Which drugs are most helpful for patients
 Patient’s view (individual)
* Which particular symptoms does the patient have

* Which drugs does he need to take in order to recover

Both aspects can be important depending on who you are
(FDA, doctor, patient).
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Techniques of Interpretation

Interpreting models

- find prototypical example of a category
- find pattern maximizing activity of a neuron

' cheeseburger

goose

simple regularizer

(Simonyan et al. 2013) ma/%( Do (wc | ;1;) + /\Q(CL‘)
TE
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Techniques of Interpretation

Explaining decisions

- “why" does the model arrive at a certain prediction
- verify that model behaves as expected

data ML blacekbox decision

explanation - Sensitivity Analysis
- Layer-wise Relevance Propagation (LRP)
4

R(x)
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Explaining Neural Network Predictions

Classification >

large activation
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Explaining Neural Network Predictions

Explanation
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Explaining Neural Network Predictions

Explanation
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Explaining Neural Network Predictions

Explanation

large relevance

cat

ladybug

dog
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Explaining Predictions Pixel-wise

Neural networks Kernel methods
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Historical remarks on Explaining Predictors

Gradients Sensitwvity Gradient va. Decomposition
(Bachrens et al. 2010) (Montavon et al , 2018)
Sensitivity
(Morch et al., 1935) Sensitivity
(Simoryan ot al. 2014)
Gradient times input DeeplLIFT Grad-CAM Integrated Gradient
(Shokumar ot 3., 2016) (Shrikumar et al . 2016) (Selvaraps of al, 2016) (Sundararman ot al, 2017)
- »@9 4 vp,‘.g;.;-’ \".
e ‘y < }:E‘:—”:' "_T-&“ ¢ %\‘
% g LRP for LSTM
LRP (Arrss ot ol 201 7)
— Probabilistic Diff
e~ P =y
&‘ | P Backprop
w
‘%\7‘ .gu?r;‘ff—-' (Zrang et al, 2016)
Deep Taylor Decomposition o
{(Montavon ot gl 2017 (arXiv 2015))
Optimization LIME Meaningful Perturbations PatternLRP
(Ribero et o, 2016) (Fong & Vedaldi 2017) (Kindermars ot 8., 2017)
Deconvolution
Deconvolution Guided Backprop

(Zoder & Fergus 2014) (Sprngenberg ot al. 2015)

Understanding the Model
Deep Visualization TCAV
(Yosirski ot ol 2015) Synthesis of preferred inputs (*Xim ot al. 2018)
Inverting CNNs (Nguyen et al. 2016)
Feature visualization (Dosovitsioy & Brox, 2015)
sl Inverting CNNs RNN cell state analysis """"‘“m

(Mahendran & Vedaldi, 2015) (Karpathy ot sl 2015)
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Applying Explanation in Vision and Text

25



Application: Faces

What makes
you look old ?

What makes
you look attractive 7

What makes
you look sad ?
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Application: Document Classification

It is the body's reaction to a strange environment. It appears to be induced
partly to physical discomfort and part to mental distress. Some people are
more prone to it than others, like some people are more prone to get sick
on a roller coaster [BEE than others. The mental part is usually induced by

a lack of clear indication of which way is up or down, ie: the Shuttle is
nor-ally oriented with its cargo bay pointed towards Earth, so the Earth
(or ground) is "above"™ the head of the . About 50% of the astronauts
| some form of motion sickness, and has done numerous tests in
to try to see how to keep the number of occurances down.

sci.spaoe

o It is the body's reaction to a strange environment. It appears to be induced
@ partly to physical discomfort and part to mental distress. Some people are

O more prone to it than others, like some people are more prone to get sick

on a roller coaster I q others. The mental part is usually induced by

a lack of clear 1ndlcation of which way 1s up or down, l1e: the Shuttle 1is
normally oriented with 1its cargo bay pointed towards Earth, so the Earth

(or ground) 1is "above" the head of the astronauts. About 5% of the astronauts
o experience some form of motion sickness, and NASA has done numerous tests in

@ to try to see how to keep the number of occurances down.

torcy

It is the body's reaction to a strange environment. It appears to be induced
partly to physical and part to mental distress. Some people are
more prone to it than others, like some people are more prone to get sick

on a roller coaster than others. The mental part 1is usuvally induced by

a lack of clear indication of which way is up or down, ie: the Shuttle is
normally oriented with its cargo bay pointed towards Earth, so the Earth

(or ground) is "above"™ the head of the astronauts. About 50% of the astronauts
rience some form of motion sickness, and NASA has done numerous tests in

to try to see how to keep the number of occurances down.

sci.med
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Sanity Checks for ‘Saliency’ Maps
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Motivation

- Developer/Researcher: Model Debugging.
- Safety concerns.
- Ethical concerns.

- Trust: Satiate 'societal’ need for reasoning to trust an automated system
learned from data.

30



Goals: Model Debugging

Model Debugging: reveal spurious correlations or the kinds of

inputs that a model 1s most likely to have undesirable performance.

(a) Husky classified as wolf (b) Explanation

[Ribeiro+ 2016]
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Promise of Explanations

* Model Debugging: reveal spurious correlations or the kinds of
inputs that a model is most likely to have undesirable performance.

v

Explanation

Fix
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Saliency/Attribution Maps
r':- , Predictions

- F Corn

Explanation
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Attribution maps provide ‘relevance’ scores for each dimension of the
Input.
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How to compute attribution?

r%

Eigrad (z) =

Gradient
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Some Issues with the Gradient

r"o

Predictions

- F Corn

Gradient

‘Visually noisy’, and can violate sensitivity w.r.t. a baseline input
[Sundararajan et. al., Shrikumar et. al., and Smilkov et. al.]
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Integrated Gradients

Eig(z) =(x — ) X / £ +a(;(x —% do

0

Sum of ‘interior’ gradients.

Integrated
Gradients

-
;;;;;;;
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Predictions

Corn

36



SmoothGrad

SmoothGrad

N
1 | '
Esg(z) = N E E(z+ gi), W
=1 ‘

[STKVW'17]

Average attribution of ‘noisy’ inputs.

Predictions

- F Corn
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Gradient-Input

rw-

Grad-Input

Element-wise product of gradient and input.

-

Predictions

Corn

38



Guided BackProp
r%

Predictions

-l F Corn

Guided
BackProp

Z.ero out ‘negative’ gradients and ‘activations’ while back-propagating.
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Other Learned Kinds
r‘

Predictions

-l F Corn

Explanation

[FV'17]

Formulate an explanation as through learned patch removal.
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The Selection Conundrum

Predictions
I = Corn
Guided Pattern
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The Selection Conundrum

For a particular task and model, how should a developer/researcher
select which method to use?
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Desirable Properties

Sensitivity to the parameters of a model to be explained.

Depend on the labeling of the data, i.e., reflect the relationship between
inputs and outputs.
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Sanity Checks

*  Model parameter randomization test: randomize (re-
initialize) the parameters of a model and now compare
attribution maps for a trained model to those derived from a
randomized model.

* Data randomization test: compare attribution maps for a
model trained with correct labels to those derived from a
model trained with random labels.

44



Model Parameter Randomization

Inception V3

Cascading randomization from top to bottom layers.

Independent layer randomization.

2l
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Model Parameter Randomization

Conjecture: If a model captures higher level class concepts, then
saliency maps should change as the model 1s being randomized.

Cascading randomization

°"°"“' mage ' from top to bottom layers
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Model Parameter Randomization

Conjecture: If a model captures higher level class concepts, then
saliency maps should change as the model is being randomized.

Cascading randomization
,:W image from top to bottom layers
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Metrics

+ Rank correlation of attribution from model with trained weights to
those derived from partially randomized models.

 Attribution sign changes. Roughly similar regions are, however, still
attributed.
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Model Parameter Randomization
CNN MNIST

Originad Image
Independent Randomization of Successive Randomization of

Layers Layers

conv hddent

C 1
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Explanation -
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Gradient-SG y -

Gradient-VG

Guided
Backpropagation

Guided GradCAM

integrated Gradients

integrated Gradients-SG




Data Randomization

Absolute-Yalue Visualization

ii H}ﬁi;

Diverging Visuakzation

RERLL }3 |
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Summary

- Focused on gradient-based methods mostly.
- Sanity checks don't tell if a method is good, just it it is invariant.

- Sole visual inspection can be deceiving.
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Cascading randomization from top to bottom layers for VGG-16
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Attacks

‘Adversarial’ attack on explanations by Ghorbant et. al.

DeeplIFT tograted Geadents

o Comfoeree M9 ’ Liama”  Condcence ™ 4 fewiae Weorace Vag
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Visualizing Deep Neural Network Decisions:
Prediction Difference Analysis
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Marginal vs Conditional Sampling

nput marginal

conditional

1 M
) | -

nput

Marginal Sampling = pixels that can be easily
predicted using neighborhood are important

=Conditional Sampling = more specific and fine

grained results
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Multivariate Analysis : Window Sizes

«AlexNet, | = k + 4, varying k

_african el., 0.63., 1 . 2 i 3 ) B =1 5 10
| ° - R0 P, Ve
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1 Gy | Gw ah Lh
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3 ) b

=|ncreasing window size = more easlily interpretable, smooth until
image gets blurry
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Visualization of Hidden Layers

=\isualize 3 different feature maps react to multiple images
=Middle of the network -- GoogleNet
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Penultimate vs Output Layers

african eleph tusher ndan cleph

7929 4
.

Penullrmate L

african cleph tusker ndan cleph

= \Visualizations In penultimate layer look similar If classes are similar

=N the final layer, values of nodes are all interdependen
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Comparing Neural Architectures

= AlexNet Is looking at more contextual info
—.gJ., sky In balloon image

= VGG: last image

BSasket differentiates between balloon and parachute

Va9
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Questions?



