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A classification example

Task: learn how to distinguish two types of images:
I desert;
I beach.

Objective: given annotated images, develop a model able to
classify unseen images into one of those classes.



Image classification example

I Features: set of values extracted from images that can be
used to measure the (dis)similarity between images Any
suggestion?

I the two most frequent colors as a descriptor



Image classification example

I Classifier: a model build using labeled examples (images for
which the classes are known). It must be able to predict the
class of a new image. Any suggestion?

I A linear classifier, for instance!

’



Image classification example

I Examples used to build the classifier : training set.
I Training data is seldom linearly separable
I Therefore there is a training error



Image classification example

I The model, or classifier, can then be used to predict/infer the
class of new data.



Image classification example

I How good is the model? Let us test, for new data (not seen
before), the classifier error rate

I Labelled examples in this stage compose the test set.
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Classic image recognition pipeline



History of methods for computer vision

I Color, shape and texture descriptors (1970-2000)
I Scale invariant features (>1999)
I Histogram of Gradients (>2005)
I Bag of Features (>2004)
I Spatial Pyramid Matching (>2006),



Classic image recognition pipeline

1. Descriptor grid: HoG, LBP, SIFT, SURF
2. Fisher Vectors projection
3. Spatial Pyramid Matching
4. Classification Algorithm

Not so versatile!



Breakthrough: annotated data available

ImageNet Challenge: ∼ 1.4 million images, 1000 classes.



CNNs now dominate image classification

AlexNet (9) GoogLeNet (22) VGG (16/19) ResNet (34+)



Previously...

Fukushima’s Neocognitron (1989)

LeCun’s LeNet (1998)



New recognition pipeline: feature learning
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Motivation with two problems

We want to find a function in the form f (x) = y — the meaning of
those are dependent on the task!

Image classification

I Data available: pairs (images, labels) from desert, beach and
mountain,

I Input: RGB image in the form x,
I Output: predicted label y (e.g. mountain) assigned to the

input image.



Motivation with two problems

Anomaly detection in Credit Card transactions

I Data available: legitimate transactions from a given client,
I Input: real-valued data including transaction location,

currency, value, timestamp, in form of x,
I Output: probability y of observing a fraudulent (anomalous)

transaction.



Machine Learning (ML) vs Deep Learning (DL)

Machine Learning

A more broad area that includes DL. Algorithms aims to infer f ()
from a space of admissible functions given training data.

I “shallow” methods often infer a single function f (.).
I e.g. a linear function f (x) = w · x + b,
I Common algorithms: The Perceptron, Support Vector

Machines, Logistic Classifier, etc.



Machine Learning (ML) vs Deep Learning (DL)

Deep Learning

Involves learning a sequence of representations via composite
functions.
Given an input x1 several intermediate representations are produced:

x2 = f1(x1)

x3 = f2(x2)

x4 = f3(x3)

· · ·

The output is achieved by several L nested functions in the form:

fL (· · · f3(f2(f1(x1,W1),W2),W3) · · · ,WL) ,

Wi are hyperparameters associated with each function i .



A shallow linear classifier

Input → x

f (W , x) =

weight
matrix

W

image

x +

bias
term

b
= scores for possible classes of x



Linear classifier for image classification

I Input: image (with N ×M × 3 numbers) vectorized into
column x

I Classes: cat, turtle, owl
I Output: class scores

= x = [1, 73, 227, 82]

f (x,W ) = s → 3 numbers with class scores

W x+ b 0.1 −0.25 0.1 2.5
0 0.5 0.2 −0.6
2 0.8 1.8 −0.1

×


1
73
227
82

+

 −2.01.7
−0.5

 =

 −337.3−38.6
460.30





Linear classifier for image classification

cat -337.3 380.3 8.6

owl 460.3 160.3 26.3

turtle 38.6 17.6 21.8

We need:
I a loss function that quantifies undesired scenarios in the

training set
I an optimization algorithm to find W so that the loss

function is minimized!



Linear classifier for image classification

I We want to optimize some function to produce the best
classifier

I This function is often called loss function,

Let (xi , yi ) be a training example: xi are the features, y is the label,
and f (.) a classifier that maps any xi into a class using parameters
W .
A loss for a single example is some function in the form:

` (f (W , xi ), yi ) (1)



Linear classifier for image classification

In practice, we measure the loss L, over a set X ,Y of N examples.
Common functions are:

Mean squared error (continuous values)

L (f (W ,X ,Y ) = L
(
Ŷ ,Y

)
=

1
N

N∑
i=1

(

predicted
label

ŷi −

true
label

yi )2

Cross entropy (bits or probability vectors)

L
(
Ŷ ,Y

)
=

1
N

N∑
i=1

yi log ŷi + (1− ŷi ) log(1− ŷi )



A linear classifier we would like

cat classifier

owl classifier

turtle classifier



Minimizing the loss function

Use the slope of the loss function over the space of parameters!
For each dimension j :

df (x)

dx
= lim

δ→0

f (x + δ)− f (x)

δ
d` (f (wj , xi ))

dwj
= lim

δ→0

f (wj + δ, xi )− f (wj , xi )
δ

We have multiple dimensions, therefore a gradient (vector of
derivatives).

We may use:
1. Numerical gradient: approximate
2. Analytic gradient: exact

Gradient descent — search for the valley of the function, moving
in the direction of the negative gradient.



Gradient descent

Changes in a parameter affects the loss (ideal example)
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Gradient descent

W

0.1,
−0.25,
0.1,
2.5,
0,
...,
−0.1


` (f (W )) = 2.31298

wi + δ

0.1+ 0.001,
−0.25,
0.1,
2.5,
0,
...,
−0.1


` (f (W ′)) =
2.31201

dwi

?,
,
,
,
,
...,


(f (wi+δ)−f (wi ))/δ



Gradient descent

W
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...,
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` (f (W )) = 2.31298

wi + δ

0.1+ 0.001,
−0.25,
0.1,
2.5,
0,
...,
−0.1


` (f (W ′)) =
2.31201

dwi

−0.97,
,
,
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(f (wi+δ)−f (wi ))/δ



Gradient descent
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Gradient descent
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Gradient descent

W

0.1,
−0.25,
0.1,
2.5,
0,
...,
−0.1


` (f (W )) = 2.31298

wi + δ

0.1,
−0.25,
0.1,
2.5,
0,
...,
−0.1


` (f (W ′)) =
2.08720

dwi

−0.93,
0.0,
−1.61,
+0.02,
+0.5,
...,
−3.7


(f (wi+δ)−f (wi ))/δ



Stochastic Gradient Descent (SGD)

It is hard to compute the gradient, when N is large.

SGD:
Approximate the sum using a minibatch (random sample) of
instances: something between 32 and 512.
Because it uses only a fraction of the data:

I fast
I often gives bad estimates on each iteration, needing more

iterations



Neuron

I input: several values (e.g. organized in a vector)
I output: a single value x .
I each input is associated with a weight w (connection strength)
I often there is a bias value b (intercept)
I to learn is to adapt the parameters: weights w and b

I function f (.) is called activation function (transforms output)

i1

i0

in

wk,0

wk,1

wk,n
xk=fk(netk)

netk=Σjwk,j ij+bk
xk

bk



Some activation functions

Sigmoid Hiperbolic Tangent
f (x) = 1

1+e−x f (x) = tanh(x)

ReLU Leaky ReLU
f (x) = max(0, x) f (x) = max(0.1x , x)



Backpropagation

I Algorithm that recursively apply chain rule to compute weight
adaptation for all parameters.

I Forward: compute the loss function for some training input
over all neurons,

I Backward: apply chain rule to compute the gradient of the
loss function, propagating through all layers of the network, in
a graph structure



A simple problem: digit classification



Neural Network with Single Layer

Grayscale Image to Vector

...

softmax1(wt
1x+ b1)

softmax2(wt
2x+ b2)

softmax3(wt
3x+ b3)

softmax4(wt
4x+ b4)

softmax5(wt
5x+ b5)

softmax6(wt
6x+ b6)

softmax7(wt
7x+ b7)

softmax8(wt
8x+ b8)

softmax9(wt
9x+ b9)

softmax10(wt
10x+ b10)



A simple problem: digit classification


x0,0 x0,1 x0,2 ... x0,783
x1,0 x0,1 x1,2 ... x0,783
...

...
...

. . .
...

x63,0 x63,1 x63,2 ... x63,783

 ·


w0,0 w0,1 ... w0,9
w1,0 w1,1 ... w1,9
w2,0 w2,1 ... w2,9
...

...
. . .

...
w783,0 w783,1 ... w783,9

+
[
b0 b1 b2 ... b9

]

Y = softmax(X ·W + b)

Y =


y0,0 y0,1 y0,2 ... y0,9
y1,0 y1,1 y1,2 ... y1,9
...

...
...

. . .
...

y63,0 y63,1 y63,2 ... y63,9





”Deep” NN with two hidden layers

...

f1(x1) = s(wt
1,jx1 + b1)

f2(x2) = s(wt
2,jx2 + b2)

softmax1(wt
3,1x3 + b3)

softmax2(wt
3,2x3 + b3)

softmax3(wt
3,3x3 + b3)

softmax4(wt
3,4x3 + b3)

softmax5(wt
3,5x3 + b3)

softmax6(wt
3,6x3 + b3)

softmax7(wt
3,7x3 + b3)

softmax8(wt
3,8x3 + b3)

softmax9(wt
3,9x3 + b3)

softmax10(wt
3,10x3 + b3)

f3(x3) = softmax(wt
3,jx3 + b3)



”Deep” NN with two hidden layers : Input

...



”Deep” NN with two hidden layers : Hidden layer 1

...



”Deep” NN with two hidden layers : Hidden layer 2

...



”Deep” NN with two hidden layers : output

...
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“LeNet” architecture

New terminology:
I Convolutional layer
I Pooling
I Feature (or Activation) maps
I Fully connected (or Dense) layer



Convolutional layer

Input (N ×M × L) e.g. 32× 32× 3

Filter (neuron) w with P × Q × D, e.g. 5× 5× 3 (keeps depth)
I Each neuron/filter performs a convolution with the input image

Centred at a specific pixel, we have, mathematically

wT x + b



Convolutional layer: local receptive field



Convolutional layer: feature maps



Convolutional layer

I Feature maps after convolution with filters followed by an
activation function (e.g. ReLU) are stacked, forming a tensor.

(32× 32× 3)

convolution layer
10 filters of 5× 5× 3

→

01

02
...

10



Convolutional layer: input x filter x stride

The convolutional layer must take into account
I input size
I filter size
I convolution stride



The MNIST example: now hidden layers are conv layers



The MNIST example: now hidden layers are conv layers



Convolutional layer: zero padding

In practice, zero padding is used to avoid losing borders. Example:
I input size: 10× 10
I filter size: 5× 5
I convolution stride: 1
I zero padding: 2
I output: 10× 10

General rule: zero padding size to preserve image size: (P − 1)/2

Example: 32× 32× 3 input with P = 5, s = 1 and zero padding
z = 2

Output size: (NI +(2 · z)−P)/s+1 = (32+(2 ·2)−5)/1+1 = 32



Convolutional layer: number of parameters

Parameters in a convolutional layer is [(P × P × d) + 1]× K :
I filter weights: P × P × d , d is given by input depth

I number of filters(neurons): K (each processes input in a
different way)

I +1 is the bias term

Example, with an image input 32× 32× 3:
I Conv Layer 1: P = 5, K = 8
I Conv Layer 2: P = 5, K = 16
I Conv Layer 3: P = 1, K = 32
I # parameters Conv layer 1: [(5× 5× 3) + 1]× 8 = 608
I # parameters Conv layer 2: [(5× 5× 8) + 1]× 16 = 3216
I # parameters Conv layer 3: [(1× 1× 16) + 1]× 32 = 544



Pooling layer

Operates over each feature map, to make the data smaller
Example: max pooling with downsampling factor 2 and stride 2.

Others can be used such as average pooling

Using convolutional layer with larger strides may substitute pooling



Pooling layer

Reducing the image size allows the filter to operate in larger
regions, performing multirresolution processing.

Example: reducing image while fixing 5× 5 filter.



Convolutional layer: convolution + activation + pooling

I Convolution: as seen before
I Activation: ReLU
I Pooling: maxpooling



Dense layers and output

Dense of fully connected (FC) layer:
I As in a regular Multilayer Perceptron
I A neuron operates over all values of previous layer

Output (also dense) layer:
I each neuron represents a class of the problem



Visualization

Donglai et al. Understanding Intra-Class Knowledge Inside CNN, 2015, Tech Report
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AlexNet (Krizhevsky, 2012)

I 60 million parameters.
I input 224× 224
I conv1: K = 96 filters with 11× 11× 3, stride 4,
I conv2: K = 256 filters with 5× 5× 48,
I conv3: K = 384 filters with 3× 3× 256,
I conv4: K = 384 filters with 3× 3× 192,
I conv5: K = 256 filters with 3× 3× 192,
I fc1, fc2: K = 4096.



VGG 19 (Simonyan, 2014)

I +layers, −filter size = less parameters
I input 224× 224,
I filters: all 3× 3,
I conv 1-2: K = 64 + maxpool
I conv 3-4: K = 128 + maxpool
I conv 5-6-7-8: K = 256 + maxpool
I conv 9-10-11-12: K = 512 + maxpool
I conv 13-14-15-16: K = 512 + maxpool
I fc1, fc2: K = 4096



GoogLeNet (Szegedy, 2014)

I 22 layers
I Starts with two convolutional layers
I Inception layer (“filter bank”):

I filters 1× 1, 3× 3, 5× 5 + max pooling 3× 3;
I reduce dimensionality using 1× 1 filters.
I 3 classifiers in different parts

I Blue = convolution,
I Red = pooling,
I Yellow = Softmax loss fully connected layers
I Green = normalization or concatenation



GoogLeNet: inception module

I 1× 1 convolution reduces the depth of previous layers by half
I this is needed to reduce complexity (e.g. from 256 to 128 d)
I concatenates 3 filters plus an extra max pooling filter

(because).



Inception modules (V2 and V3)

multiple 3× 3 convs. flattened conv. decrease size



VGG19 vs “VGG34” vs ResNet34



Residual Network — ResNet (He et al, 2015)

Reduces number of filters, increases number of layers (34-1000).
Residual architecture: add identity before activation of next layer.



Comparison

Thanks to Qingping Shan www.qingpingshan.com

www.qingpingshan.com
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How to Train

Batch Stochastic Gradient Descent

I Mini-batch size: default is around 16, but more might be
used to speed-up.

I Loss, validation and training error: plot values for each
epoch or for each number of iterations.

I Learning rate: adjust learning rate with decay, for smoother
convergence.



Learning rate: fixed small step



Learning rate: large step



Learning rate: decaying step



How to Train: Optimizers

Examples of Optimizers

I regular SGD: widely used, need to define proper learning rate
and decaying,

I RMSProp: which employ the concept of momentum (next
gradients depend on previous ones)

I Adam: that estimate the learning rate based on the current
and previous gradient values



How to Train

Convergence and training set

I Clean data: cleaniness of the data is very important (each
class must be well defined, low rate of label errors),

I Data augmentation: generate new examples by perturbation
of existing ones (e.g. noise, affine transformations),



Regularization: on loss functions

`(W ) =
1
N

N∑
i=1

`i (xi , y + i ,W )+

regularization

λR(W )

∇W `(W ) =
1
N

N∑
i=1

∇W `i (xi , y + i ,W ) + λ∇WR(W )

Regularization will help the model to keep it simple. Possible
methods:

I L2 : R(W ) =
∑

i

∑
j W

2
i ,j

I L1 : R(W ) =
∑

i

∑
j |Wi ,j |



Alternative methods that help convergence and prevent
overfitting

I Dropout: randomly turn off a percentage of the neurons
during training.

I activation of some neurons are randomly set to zero at every
iteration,

I can be seen as to “bootstrap” (statistics technique) training,
I prevents memorization.



Alternative methods that help convergence and prevent
overfitting

I Batch normalization: z-score normalization over all data
I subtract the mean, divide by the standard deviation of all

batch examples,
I performed before/after layer processing.
I for deep nets, it is employed before every block (e.g. residual

block, inception block, etc.),



Errors when defining the space of admissible functions

Strong bias: space of functions more restrict



Errors when defining the space of admissible functions

Weak bias: space of functions is wider



Are Deep Networks reliable?

Important stuff to look into...

I Are n training examples enough to ensure learning in a given
CNN architecture?

I Minimum sample size to ensure convergence within some
numerical threshold γ

I Generalisation bound given some probability error δ



DL learning capabilities controversy

Marcus (2018) in Deep Learning: a critical appraisal:
"... systems that rely on deep learning frequently have to generalize
beyond specific data ... the ability of formal proofs to guarantee
high-quality performance is more limited."



Limitations

CNNs are easily fooled: adversarial examples can be created to
attack or break the model



Zhang et al (2017)
"... our experiments establish that state-of-the-art convolutional
networks (...) trained with stochastic gradient methods easily fit a
random labeling of the training data."



Alternatives for limited annotated data

Pre-trained Neural Networks
I Fine-tuning
I Off-the-shelf feature extraction



Finetuning

Classification (finetuning)
I Data similar to ImageNet: freeze most Conv Layers, train

output (or other) top layers from scratch

I Data unsimilar to ImageNet: freeze lower Conv Layers, train
output and intermediate layers from scratch



Guidelines for new data

Feature extraction for image classification and retrieval
I Input data and get activation values of higher Conv and/or

dense layers
I Apply some dimensionality reduction: e.g. PCA, Product

Quantization, etc. after extraction
I Use external classifier: e.g. SVM, Random Forest, etc.



Concluding remarks

I Deep Learning is not a panacea;
I Low interpretability;
I There are important concerns about generalization of Deep

Networks;
I However those methods can be really useful for finding

representations;
I Many challenges and research frontiers for more complex tasks.
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