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General architecture of an Autoencoder
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General architecture of an Autoencoder
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Autoencoders basics: encoder and decoder

Encoder

Produces Code or Latent Representation

h =s(Wx +b) = f(x)

Decoder

Produces Reconstruction of the input
R = s(Wh +b’) = g(h)

Tied weights when W' = W T



Autoencoders basics: loss function

Given the output & = g(f(x)
We want to minimize some reconstruction loss:

Cross entropy (bits or probability vectors)

L(x,R) = xlogX + (1 — x) log(1 — X)

Mean squared error (continuous values)

L(x,%) = |Ix — &[>



Autoencoders basics: flavours

Undercomplete

» Bottleneck layer produces code h with less dimensions then
input x

Overcomplete

» Code h has more dimensions then the input x

» Different versions e.g. sparse, denoising, contractive.
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Undercomplete

Learns a Lossy Compression of the input data.

» has a “bottleneck” layer

» can be used for Dimensionality Reduction — often compared
to Principal Component Analysis (PCA)

» often code is a good representation for the training data only
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Undercomplete

Increasing the number of layers adds capacity to the AE.

» Encoder and Decoder layers can also be convolutional layers
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In principle with a sufficiently large capacity it may map every input
to a single neuron on bottleneck layer.
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Overcomplete AEs

High-dimensional intermediate layer

» a naive implementation would allow a copy so that x = X
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Overcomplete regularized AEs

Regularization with sparsity constraint

L(x, g(f(x))) + Q(f(x))
L(x, g(f(x))) + AZ [hil,

» loss function tries to keep a low number of activation neurons
per training input



Overcomplete regularized AEs

Regularization with sparsity constraint
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Denoising AEs (DAEs)

Regularization achieved by adding noise to x
» the loss is computed using the noiseless input x

» AE has to reconstruct x using a noisy input X, so
representation must be robust to noise

» this prevents the overcomplete AE to simply copy the data



Denoising AEs (DAEs)

Regularization achieved by adding noise to x

» DAEs aim to learn a good internal representation as a side
effect of learning to denoise the input
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Denoising AEs (DAEs)

Noise processes

» Additive Gaussian Noise with © = 0, and some o;

» Set a percentage of the input data to zero with some
probability p.

Interpretation

» Learns to project data around some manifold to the
distribution of the original (noiseless) data

» |f some input is to far from the original distribution, it
produces a high reconstruction error



Denoising AEs (DAEs): example

Using MNIST dataset, without noise

Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion." Journal of Machine
Learning Research, 2010: 3371-3408.



Denoising AEs (DAEs): example

Using MNIST dataset, zero input variable with 25% probability

Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising criterion." Journal of Machine
Learning Research, 2010: 3371-3408.



Denoising AEs (DAEs): example

Using MNIST dataset, zero input variable with 50% probability
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Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising criterion." Journal of Machine
Learning Research, 2010: 3371-3408.



A sketch manifold illustration




Concluding remarks

» AEs can be a good choice with unsupervised data;

» Deep autoencoders can be useful to many applications, via
manifold learning;

» The potential for manifold learning can be used for instance on
Generative tasks (Generative and Variational Autoencoders).

» Those can also be plugged in supervised architectures.
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