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General architecture of an Autoencoder

input x Encoder Code Decoder output x̂



General architecture of an Autoencoder

Encoder Code Decoder



Autoencoders basics: encoder and decoder

Encoder
Produces Code or Latent Representation

h = s(Wx + b) = f (x)

Decoder
Produces Reconstruction of the input

x̂ = s(W′h + b′) = g(h)

Tied weights when W′ = WT



Autoencoders basics: loss function

Given the output x̂ = g(f (x)
We want to minimize some reconstruction loss:

L(x, g(f (x)) = x̂)

Cross entropy (bits or probability vectors)

L(x, x̂) = x log x̂ + (1− x) log(1− x̂)

Mean squared error (continuous values)

L(x, x̂) = ||x− x̂||2



Autoencoders basics: flavours

Undercomplete

I Bottleneck layer produces code h with less dimensions then
input x

Overcomplete

I Code h has more dimensions then the input x
I Different versions e.g. sparse, denoising, contractive.
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Undercomplete

Learns a Lossy Compression of the input data.

I has a “bottleneck” layer
I can be used for Dimensionality Reduction — often compared

to Principal Component Analysis (PCA)
I often code is a good representation for the training data only



Undercomplete

Increasing the number of layers adds capacity to the AE.

I Encoder and Decoder layers can also be convolutional layers

In principle with a sufficiently large capacity it may map every input
to a single neuron on bottleneck layer.
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Overcomplete AEs

High-dimensional intermediate layer

I a naive implementation would allow a copy so that x = x̂



Overcomplete regularized AEs

Regularization with sparsity constraint

L(x , g(f (x))) + Ω(f (x))

L(x , g(f (x))) + λ
∑
i

|hi |,

I loss function tries to keep a low number of activation neurons
per training input



Overcomplete regularized AEs

Regularization with sparsity constraint



Denoising AEs (DAEs)

Regularization achieved by adding noise to x
I the loss is computed using the noiseless input x
I AE has to reconstruct x using a noisy input x̃, so

representation must be robust to noise
I this prevents the overcomplete AE to simply copy the data



Denoising AEs (DAEs)

Regularization achieved by adding noise to x

I DAEs aim to learn a good internal representation as a side
effect of learning to denoise the input

x x̃ x̂



Denoising AEs (DAEs)

Noise processes

I Additive Gaussian Noise with µ = 0, and some σ;
I Set a percentage of the input data to zero with some

probability p.

Interpretation

I Learns to project data around some manifold to the
distribution of the original (noiseless) data

I If some input is to far from the original distribution, it
produces a high reconstruction error



Denoising AEs (DAEs): example

Using MNIST dataset, without noise

Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising criterion." Journal of Machine

Learning Research, 2010: 3371-3408.



Denoising AEs (DAEs): example

Using MNIST dataset, zero input variable with 25% probability

Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising criterion." Journal of Machine

Learning Research, 2010: 3371-3408.



Denoising AEs (DAEs): example

Using MNIST dataset, zero input variable with 50% probability

Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising criterion." Journal of Machine

Learning Research, 2010: 3371-3408.



A sketch manifold illustration



Concluding remarks

I AEs can be a good choice with unsupervised data;
I Deep autoencoders can be useful to many applications, via

manifold learning;
I The potential for manifold learning can be used for instance on

Generative tasks (Generative and Variational Autoencoders).
I Those can also be plugged in supervised architectures.
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