Deep Learning II : unsupervised tasks with auto-encoders

Moacir Ponti ICMC, Universidade de São Paulo

Contact: www.icmc.usp.br/~moacir — moacir@icmc.usp.br

Rio de Janeiro/Brazil - April, 2019

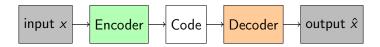
Autoencoders basics

Undercomplete AEs

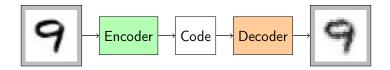
Overcomplete Regularized AEs

Concluding remarks

General architecture of an Autoencoder



General architecture of an Autoencoder



Autoencoders basics: encoder and decoder

Encoder

Produces Code or Latent Representation

$$\mathbf{h} = s(\mathbf{W}\mathbf{x} + \mathbf{b}) = f(\mathbf{x})$$

Decoder

Produces <u>Reconstruction</u> of the input

$$\mathbf{\hat{x}} = s(\mathbf{W'}\mathbf{h} + \mathbf{b'}) = g(\mathbf{h})$$

Tied weights when $W' = W^T$

Autoencoders basics: loss function

Given the output $\mathbf{\hat{x}} = g(f(\mathbf{x}))$

We want to minimize some reconstruction loss:

$$\mathcal{L}(\mathbf{x}, g(f(\mathbf{x})) = \mathbf{\hat{x}})$$

Cross entropy (bits or probability vectors)

$$\mathcal{L}(\mathbf{x}, \mathbf{\hat{x}}) = \mathbf{x} \log \mathbf{\hat{x}} + (1 - \mathbf{x}) \log(1 - \mathbf{\hat{x}})$$

Mean squared error (continuous values)

$$\mathcal{L}(\mathbf{x}, \mathbf{\hat{x}}) = ||\mathbf{x} - \mathbf{\hat{x}}||^2$$

Undercomplete

 Bottleneck layer produces code h with less dimensions then input x

Overcomplete

- Code h has more dimensions then the input x
- ► Different versions e.g. sparse, denoising, contractive.

Autoencoders basics

Undercomplete AEs

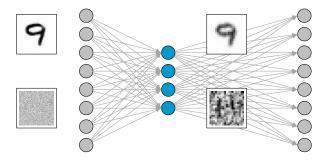
Overcomplete Regularized AEs

Concluding remarks

Undercomplete

Learns a Lossy Compression of the input data.

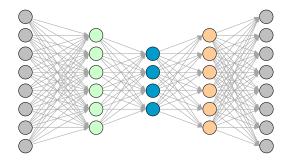
- has a "bottleneck" layer
- can be used for Dimensionality Reduction often compared to Principal Component Analysis (PCA)
- ▶ often code is a good representation for the training data only



Undercomplete

Increasing the number of layers adds capacity to the AE.

• Encoder and Decoder layers can also be convolutional layers



In principle with a sufficiently large capacity it may map every input to a single neuron on bottleneck layer. Autoencoders basics

Undercomplete AEs

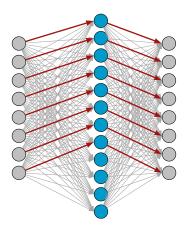
Overcomplete Regularized AEs

Concluding remarks

Overcomplete AEs

High-dimensional intermediate layer

 \blacktriangleright a naive implementation would allow a copy so that $x=\hat{x}$



Regularization with sparsity constraint

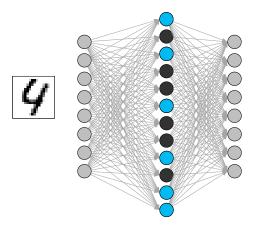
$$\mathcal{L}(x, g(f(x))) + \Omega(f(x))$$

 $\mathcal{L}(x, g(f(x))) + \lambda \sum_{i} |h_i|,$

 loss function tries to keep a low number of activation neurons per training input

Overcomplete regularized AEs

Regularization with sparsity constraint



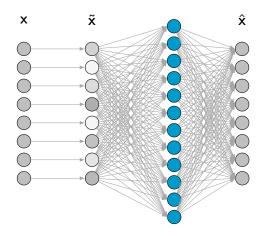
Regularization achieved by adding noise to \mathbf{x}

- the loss is computed using the noiseless input x
- ► AE has to reconstruct x using a noisy input x̃, so representation must be robust to noise
- ► this prevents the overcomplete AE to simply copy the data

Denoising AEs (DAEs)

Regularization achieved by adding noise to \boldsymbol{x}

 DAEs aim to learn a good internal representation as a side effect of learning to denoise the input



Denoising AEs (DAEs)

Noise processes

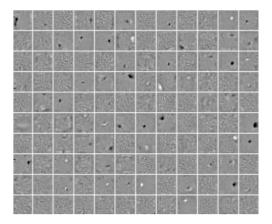
- Additive Gaussian Noise with $\mu = 0$, and some σ ;
- Set a percentage of the input data to zero with some probability p.

Interpretation

- Learns to project data around some manifold to the distribution of the original (noiseless) data
- If some input is to far from the original distribution, it produces a high reconstruction error

Denoising AEs (DAEs): example

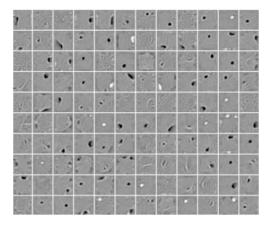
Using MNIST dataset, without noise



Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion." Journal of Machine Learning Research, 2010: 3371-3408.

Denoising AEs (DAEs): example

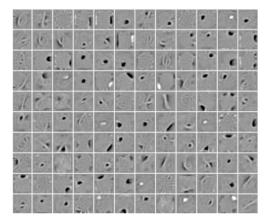
Using MNIST dataset, zero input variable with 25% probability



Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion." Journal of Machine Learning Research, 2010: 3371-3408.

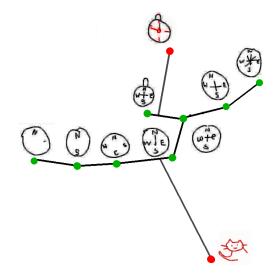
Denoising AEs (DAEs): example

Using MNIST dataset, zero input variable with 50% probability



Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion." Journal of Machine Learning Research, 2010: 3371-3408.

A sketch manifold illustration



- ► AEs can be a good choice with unsupervised data;
- Deep autoencoders can be useful to many applications, via manifold learning;
- The potential for manifold learning can be used for instance on Generative tasks (Generative and Variational Autoencoders).
- Those can also be plugged in supervised architectures.

Ponti, M.; Ribeiro, L.; Nazare, T.; Bui, T.; Collomosse, J. Everything you wanted to know about Deep Learning for Computer Vision but were afraid to ask. In: SIBGRAPI – Conference on Graphics, Patterns and Images, 2017. http:

//sibgrapi.sid.inpe.br/rep/sid.inpe.br/sibgrapi/2017/09.05.22.09

- Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion." Journal of Machine Learning Research, 2010: 3371-3408.
- ► Goodfellow, I., Bengio, Y., and Courville, A. Deep learning. MIT press, 2016.