

SUMMER SCHOOL ON DATA SCIENCE **FGV EMAp**

Advances in Numerical Modeling and Data Analysis on Water Resources related Issues

Rodrigo Amado Garcia Silva

Contact: rodrigoamado@oceanica.ufrj.br

Coastal and Oceanographic Engineering Area (Ocean Engineering Program)

- Research Engineer (postdoc)
- Issues: Environmental hydrodynamics, wave generation and propagation, sediment transport, coastal vulnerability, water quality

HidroAmb – Water Resources and Environmental Engineering

- Director and Environmental Engineer
- Issues: the same

Water resources related issues

- Environmental Hydrodynamics
- Wave generation and propagation
- Sediment transport

Hydrodynamics

Wave propagation

Morphodynamics

Water resources related issues

- Environmental Hydrodynamics
- Wave propagation
- Sediment transport
- Pollutant transport and dispersion

ALL NONLINEAR PHENOMENA!!

Water resources related issues

- Environmental Hydrodynamics
- Wave propagation
- Sediment transport
- Pollutant transport and dispersion

ALL NONLINEAR PHENOMENA!!

Simulation requires numerical solution of nonlinear differential equations

SisBaHiA – Environmental Hydrodynamics Base System

Computational modeling system provided by COPPE/UFRJ

>Environmental modeling of water bodies with complex geometry, as rivers, estuaries, lagoons, bays, coasts, reservoirs, etc.

> Open code (Fortran) free software

➢ Finite elements and finite difference numerical models

How does it work? **Example: Ilhabela – SP**

Batimetria (m) RN: Nível de Redução Carta Náutica 1643

Google Earth

SP

How does it work?

Santos

- Example: Ilhabela SP
- Digital terrain model

60

Bertioga

Batimetria (m) RN: Nivel de Redução Carta Náutica 1643

SR

Ilhabela

Sistema Base de Hidrodinâmica Ambiental

COPPE - Engenharia Costeira & Oceanográfica

How does it work?

- Example: Ilhabela SP
- Digital terrain model

- How does it work?
- **Example: Ilhabela SP**
- Simulated phenomena: wind waves generation
- **Input data:**
- **Bathymetry (DTM)**
- \succ
- **Boundary conditions** \succ

How does it work? Example: Ilhabela – SP

Altura Significativa (m)

1.3

1.5

1.8

2.0

Caraquatatub

1.0

Results

0.5

0.8

0.0

7385000

7360000

7335000

7310000

0.3

Wave height (m)

SisBaHiA₁₀

How does it work?

Example: Ilhabela – SP

Data analysis

Sea bottom surface

Data analysis

• Wind data acquisition

CECMWF

European Centre for Medium-Range Weather Forecasts

Global athmospheric models

- Wind data
- NETCDF format
- Python interface

Wind data analysis

Grapher (2D and 3D graphing and analysis)

Model setup and execution

Grapher

(temporal results)

Results analysis

Surfer

(spatial results)

SisBaHiA

Research and Development

- > Nearshore morphological processes
- Wave induced sediment transport

Port sedimentation

Coastal erosion

Beach Profile

Beach Profile

Good results

- Good results
- Highly dependent on case to case calibration

- Good results
- Highly dependent on case to case calibration
- Several parameters involved

- Good results
- Highly dependent on case to case calibration
- Several parameters involved
- Nonlinearity expressed in the data

- Good results
- Highly dependent on case to case calibration
- Several parameters involved
- Nonlinearity expressed in the data
- Upcoming research: how to find a pattern?

- Good results
- Highly dependent on case to case calibration
- Several parameters involved
- Nonlinearity expressed in the data
- Upcoming research: how to find a pattern?
 - Machine learning

Beach Profile

Machine learning

Several methods:

- Artificial neural networks;
- Genetic algorithms;
- Bayesian networks;
- Regression trees;

➢ etc

Goldstein et. al (2019)

Thanks a lot!

Rodrigo Amado G. Silva

rodrigoamado@oceanica.ufrj.br