Topological Data Analysis, Basics and Computation

Jean-Daniel Boissonnat, Siddharth Pritam

DataShape INRIA, Sophia-Antipolis, France

February 10, 2020

FGV EMAp

Table of Contents

2 Topological Data Analysis (TDA)

3 Computations

What is Topology?

- Topology \sim Qualitative Geometry.
- Geometry is about quantities like, Distances and Angles.

What is Topology?

- $\bullet~$ Topology $\sim~$ Qualitative Geometry.
- Geometry is about quantities like, Distances and Angles.

• Different geometrically, same topologically.

Topology

• Topology is the study of continuous deformations (rubber sheet geometry).

Topology

• Topology is the study of continuous deformations (rubber sheet geometry).

- Allowed: Stretching and Shrinking.
- Not Allowed : Cutting and Gluing.

Different topological spaces

• What are the things Topologists can differentiate?

Different topological spaces

• What are the things Topologists can differentiate?

- Above two graphs are topologically different.
- Different number of components (therefore different connectivity).
- More formally: They have different zero-dimensional **Homology**, $H_0()$.

• Different number of cycles (1-dim-holes).

• Different number of cycles (1-dim-holes).

• Different one-dimensional Homology, H₁()

• Different number of cycles (1-dim-holes).

- Different one-dimensional Homology, H₁()
- 1-dim Cycle, 2-dim Hole.

• Different number of cycles (1-dim-holes).

- Different one-dimensional Homology, H₁()
- 1-dim Cycle, 2-dim Hole.

• *H_k*()s are vector spaces, **Betti numbers** *β_k* = *Rank*(*H_k*())

Homology of Sphere and Torus

• Different number of cycles (1-dim-holes).

Homology of Sphere and Torus

• Different number of cycles (1-dim-holes).

- Sphere : $\beta_0 = 1$, $\beta_1 = 0$, $\beta_2 = 1$, $\beta_k = 0$ for k > 2
- Torus : $\beta_0 = 1$, $\beta_1 = 2$, $\beta_2 = 1$, $\beta_k = 0$ for k > 2
- Betti numbers β_k s could be used to distinguish topological spaces.

Table of Contents

2 Topological Data Analysis (TDA)

3 Computations

Data

- Data could be financial, biological, material...
- \bullet Visualized as point cloud in \mathbb{R}^d

• Task: Analyze it topologically.

Data

- Data could be financial, biological, material...
- \bullet Visualized as point cloud in \mathbb{R}^d

• Task: Analyze it topologically.

It's not all new

• Clustering.

 \bullet Topologically: Connected Component; Compute the 0-th homology group or β_0

It's not all new

• Clustering.

- $\bullet\,$ Topologically: Connected Component; Compute the 0-th homology group or β_0
- Regression. Hypothesis: Linear shape; Compute the line that fits the best.

The new approach

• Hypothesis: Data P is a finite sample of some underlying topological space X.

• Goal: To infer the homology groups or betti numbers of X.

The new approach

• Hypothesis: Data P is a finite sample of some underlying topological space X.

- Goal: To infer the homology groups or betti numbers of X.
- Problem $P \neq X$, P is discrete, finite, X could be continuous.

Union of Balls

- Probable Solution: Inflate the points.
- Imagine a ball $B(p, \epsilon)$ of some radius ϵ around all $p \in P$.
- Such that $P^{\epsilon} := \bigcup_{p \in P} (B(p, \epsilon)) \supset X$.

Union of Balls

- Probable Solution: Inflate the points.
- Imagine a ball $B(p, \epsilon)$ of some radius ϵ around all $p \in P$.
- Such that $P^{\epsilon} := \bigcup_{p \in P} (B(p, \epsilon)) \supset X$.

• Problem, how to find the right $\epsilon!$.

Union of Balls

• Bigger problem, There might not be one right ϵ .

At no scale, can the union of balls determine the two loops simultaneously.

• Solution: Compute homology at all scales, i.e. Persistent Homology

Persistent Homology

• We keep track of the birth and the death of cycles.

Simplicial Complex

• To perform computation, transform continuous to discrete space.

- $\bullet\,$ Union of balls $\sim\,$ Čech complex.
- The discrete space is known as Simplicial Complex.
- Simplicial Complex : Nicely glued edges, triangle, tetrahedron...

Čech and Rips Complex

- Rips Complex: An example of flag complex.
- Čech and Rips complex are interleaved.

$$R(P,\epsilon)\subseteq C(P,\sqrt{2}\epsilon)\subseteq R(P,\sqrt{2}\epsilon)$$

Filtration

• As radius increases, the čech complex grows with inclusion of new simplices.

- Filtration : A sequence of nested simplicial complexes.
- The filtration value of a simplex is the radius at which appears first.

Persistent Homology of a filtration

• Barcode of a filtration.

 $\bullet\,$ Small bars \to Noise, Big bars \to Real features.

Table of Contents

Topology

2 Topological Data Analysis (TDA)

Negative Simplex

• Negative Simplex: A simplex which destroys a homology group.

• A negative k-simplex destroys a (k-1)-cycle.

Positive Simplex

• Positive Simplex: A simplex which creates a homology group.

- A positive *k*-simplex creates a *k*-cycle.
- Persistence diagram: Pairings of positive and negative simplices.

Boundary Matrix

Persistence Algorithm

Algorithm 1 Reduction Algorithm

1: procedure REDUCE(∂) $\triangleright \partial$ is the boundary matrix. $R = \partial;$ 2: for j = 1 to m do 3: while there exists j' < j with low(j') = low(j) do 4: add column j' to column j \triangleright mod 2 operation. 5 end while 6. end for 7: 8: end procedure \triangleright Return R

• Run time complexity: $\mathcal{O}(n^3)$; n = filtration size.

Simple Example

Stability

- A hallmark result in persistence theory.
- Stablity theorem: Two close(similiar) point sets will have close(similar) barcodes/persistence diagrams.

• Proven by David Cohen-Steiner et. al.

Table of Contents

4 Motivation

- **5** Strong Collapse
- **6** Strong collapse of a Flag Complex
- Edge collapse of a Flag Complex
- **B** Persistence of Flag complexes

Motivation

- Computing persistent homology (PH) has O(n^ω) time complexity, n is the filtration size, ω ≤ 2.4.
- For massive and high-dimensional datasets, *n* may be very large (of order of billions).
- Rips complex : Widely used, Easy to compute, however *n* grows exponentially with dimension.
- Our work reduces the size the filtration by order of magnitude 3-4 using Strong Collapses and Edge Collapse.

Motivation

- Computing persistent homology (PH) has O(n^ω) time complexity, n is the filtration size, ω ≤ 2.4.
- For massive and high-dimensional datasets, *n* may be very large (of order of billions).
- Rips complex : Widely used, Easy to compute, however *n* grows exponentially with dimension.
- Our work reduces the size the filtration by order of magnitude 3-4 using Strong Collapses and Edge Collapse.
- Major Advantages:
 - Reduction is done on the 1-skeleton \implies Extremely Fast and Memory Efficient.
 - We can compute the exact PH, and a substantially faster approximate PH at a very minimal cost.

Table of Contents

Motivation

5 Strong Collapse

6 Strong collapse of a Flag Complex

Edge collapse of a Flag Complex

8 Persistence of Flag complexes

Strong Collapse

Definition

Dominated vertex: If the link $lk_{\mathcal{K}}(v)$ is a simplicial cone. i.e $lk_{\mathcal{K}}(v) = v'L$.

• Vertex v is said to be dominated by v'.

Strong Collapse

Definition

Dominated vertex: If the link $lk_{\kappa}(v)$ is a simplicial cone. i.e $lk_{\kappa}(v) = v'L$.

• Vertex v is said to be dominated by v'.

Definition

An elementary strong collapse consists of removal of a dominated vertex v from K.

 $K \searrow \searrow^e \{K \setminus v\}$

• A series of elementary strong collapses from K to L (subcomplex) is called a strong collapse.

$$K \searrow L$$

• K and L are said to have the same strong homotopy type.

Theorem

.

Strong homotopy type \implies Simple homotopy type \implies Homotopy type.

• A series of elementary strong collapses from K to L (subcomplex) is called a strong collapse.

$$K \searrow L$$

• K and L are said to have the same strong homotopy type.

Theorem

Strong homotopy type \implies Simple homotopy type \implies Homotopy type.

Lemma

v is dominated by v' iff all the maximal simplices of K that contain v also contain v'.

• A series of elementary strong collapses from K to L (subcomplex) is called a strong collapse.

$$K \searrow L$$

• K and L are said to have the same strong homotopy type.

Theorem

Strong homotopy type \implies Simple homotopy type \implies Homotopy type.

Lemma

v is dominated by v' iff all the maximal simplices of K that contain v also contain v'.

- Retraction map: The vertex map $\mathbf{r}: K \to K \setminus v$ defined as: r(w) = w if $w \neq v$ and r(v) = v'.
- Minimal complex : A complex without any dominated vertex.
- Core: K_0 is a core of K, if $K \searrow K_0$ and K_0 is a minimal complex.
- Every simplicial complex has a unique core upto isomorphism.

Table of Contents

4 Motivation

5 Strong Collapse

6 Strong collapse of a Flag Complex

Edge collapse of a Flag Complex

8 Persistence of Flag complexes

- Open neighborhood $N_G(v)$ of v in G is defined as $N_G(v) := \{u \in G \mid [uv] \in E\}$.
- The closed neighborhood $N_G[v] := N_G(v) \cup \{v\}.$

- Open neighborhood $N_G(v)$ of v in G is defined as $N_G(v) := \{u \in G \mid [uv] \in E\}$.
- The closed neighborhood $N_G[v] := N_G(v) \cup \{v\}$.

Lemma

Let K be a flag complex. A vertex $v \in K$ is dominated by v' if and only if $N_G[v] \subseteq N_G[v']$.

- Open neighborhood $N_G(v)$ of v in G is defined as $N_G(v) := \{u \in G \mid [uv] \in E\}$.
- The closed neighborhood $N_G[v] := N_G(v) \cup \{v\}$.

Lemma

Let K be a flag complex. A vertex $v \in K$ is dominated by v' if and only if $N_G[v] \subseteq N_G[v']$.

Lemma

Core of a flag complex is a flag complex.

- Open neighborhood $N_G(v)$ of v in G is defined as $N_G(v) := \{u \in G \mid [uv] \in E\}$.
- The closed neighborhood $N_G[v] := N_G(v) \cup \{v\}$.

Lemma

Let K be a flag complex. A vertex $v \in K$ is dominated by v' if and only if $N_G[v] \subseteq N_G[v']$.

Lemma

Core of a flag complex is a flag complex.

• \implies The skeleton of the core can computed using only the graph G of K .

Table of Contents

4 Motivation

5 Strong Collapse

6 Strong collapse of a Flag Complex

7 Edge collapse of a Flag Complex

8 Persistence of Flag complexes

Definition

Dominated edge: If the link $lk_{\kappa}(e)$ is a simplicial cone. i.e $lk_{\kappa}(e) = v'L$.

• Edge e is said to be dominated by v'.

Definition

Dominated edge: If the link $lk_{\kappa}(e)$ is a simplicial cone. i.e $lk_{\kappa}(e) = v'L$.

- Edge e is said to be dominated by v'.
- An elementary edge-collapse consists of removal of a *dominated edge e* from K.

$$K \searrow \searrow^{\mathsf{e}} \{K \setminus \mathsf{e}\}$$

Lemma

Let K be a flag complex. A vertex $e \in K$ is dominated by v' if and only if $N_G[e] \subseteq N_G[v']$.

Definition

Dominated edge: If the link $lk_{\kappa}(e)$ is a simplicial cone. i.e $lk_{\kappa}(e) = v'L$.

- Edge e is said to be dominated by v'.
- An elementary edge-collapse consists of removal of a *dominated edge e* from K.

 $K \searrow \searrow^e \{K \setminus e\}$

. Lemma

Let K be a flag complex. A vertex $e \in K$ is dominated by v' if and only if $N_G[e] \subseteq N_G[v']$.

Lemma

1-core of a flag complex is a flag complex.

Definition

Dominated edge: If the link $lk_{\kappa}(e)$ is a simplicial cone. i.e $lk_{\kappa}(e) = v'L$.

- Edge e is said to be dominated by v'.
- An elementary edge-collapse consists of removal of a *dominated edge e* from K.

 $K \searrow \searrow^e \{K \setminus e\}$

. Lemma

Let K be a flag complex. A vertex $e \in K$ is dominated by v' if and only if $N_G[e] \subseteq N_G[v']$.

Lemma

1-core of a flag complex is a flag complex.

• \implies The skeleton of the core can computed using only the graph G of K .

Table of Contents

4 Motivation

5 Strong Collapse

6 Strong collapse of a Flag Complex

Edge collapse of a Flag Complex

8 Persistence of Flag complexes

Preprocessing Flow

Objective : To compute the PD of a filtration of a flag complex (flag filtration).

Edge collapse flow

Experiments

Data	Det	VertexCollapser +PD(Gudhi)						
Data		dim	Pre-Time	Tot-Time	Step(btl-dist)	Snaps		
netw-sc	379	∞	7.28	7.38	0.02	263		
	"	∞	13.93	14.03	0.01	531		
	"	∞	366.46	366.56	0	8420		
senate	103	∞	2.53	2.54	0.001	403		
	"	∞	15.96	15.98	0	2728		

• VertexCollapser +PD(Gudhi)

• Ripser.

Data	Det	Threshold	Val		Val		Val	
Data	FIIL	Threshold	dim	Time	dim	Time	dim	Time
netw-sc	379	5.5	4	25.3	5	231.2	6	∞
senate	103	0.415	3	0.52	4	5.9	5	52.3
"	"		6	406.8	7	∞		
eleg	297	0.3	3	8.9	4	217	5	∞
HIV	1088	1050	2	31.35	3	∞		
torus	2000	1.5	2	193	3	∞		

Table: Time is the total time (in seconds) taken by Ripser. ∞ means that the experiment ran longer than 12 hours or crashed due to memory overload.

Experiments

Dat	Data	Pot	Thrsld	EdgeCollapser +PD						
	Data	1.110		Edge(I)/Edge(C)	Size/Dim	dim	Pre-Time	Tot-Time		
ſ	netw-sc	379	5.5	8.4K/417	1K/6	~	0.62	0.73		
ſ	senate	103	0.415	2.7K/234	663/4	~	0.21	0.24		
Ì	eleg	297	0.3	9.8K/562	1.8K/6	∞	1.6	1.7		
Ì	HIV	1088	1050	182K/6.9K	86.9M/?	6	491	2789		
Ì	torus	2000	1.5	428K/14K	44K/3	∞	288	289		

• EdgeCollapser +PD(Gudhi)

Table: Time (in seconds) taken by Edge-Collapser and total time (in seconds) including PD computation (Tot-Time).

• VertexCollapser +PD(Gudhi)

Data	Pnt	Thrsld	VertexCollapser +PD						
			Size/Dim	dim	Pre-Time	Tot-Time	Step	Snaps	
netw-sc	379	5.5	175/3	∞	366.46	366.56	0	8420	
senate	103	0.415	417/4	∞	15.96	15.98	0	2728	
eleg	297	0.3	835K/16	∞	518.36	540.40	0	9850	
HIV	1088	1050	127.3M/?	4	660	3,955	4	184	
torus	2000	1.5		4	∞^*	∞	0	428K	

Thank You!