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What is Topology?

Topology ∼ Qualitative Geometry.

Geometry is about quantities like, Distances and Angles.

Different geometrically, same topologically.
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Topology

Topology is the study of continuous deformations (rubber sheet geometry).

Allowed: Stretching and Shrinking.

Not Allowed : Cutting and Gluing.
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Different topological spaces

What are the things Topologists can differentiate?

Above two graphs are topologically different.

Different number of components (therefore different connectivity).

More formally: They have different zero-dimensional Homology, H0().
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The idea of Homology

Different number of cycles (1-dim-holes).

Different one-dimensional Homology, H1()

1-dim Cycle, 2-dim Hole.

Hk()s are vector spaces, Betti numbers βk = Rank(Hk())
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Homology of Sphere and Torus

Different number of cycles (1-dim-holes).

Sphere : β0 = 1, β1 = 0, β2 = 1, βk = 0 for k > 2

Torus : β0 = 1, β1 = 2, β2 = 1, βk = 0 for k > 2

Betti numbers βks could be used to distinguish topological spaces.
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Data

Data could be financial, biological, material...

Visualized as point cloud in Rd

Task: Analyze it topologically.

1 (DataShape INRIA, Sophia-Antipolis, France) Topological Data Analysis, Basics and Computation February 10, 2020 9 / 40



Data

Data could be financial, biological, material...

Visualized as point cloud in Rd

Task: Analyze it topologically.

1 (DataShape INRIA, Sophia-Antipolis, France) Topological Data Analysis, Basics and Computation February 10, 2020 9 / 40



It’s not all new
Clustering.

Topologically: Connected Component; Compute the 0-th homology group or β0

Regression. Hypothesis: Linear shape; Compute the line that fits the best.
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The new approach

Hypothesis: Data P is a finite sample of some underlying topological space X .

Goal: To infer the homology groups or betti numbers of X .

Problem P 6= X , P is discrete, finite, X could be continuous.
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Union of Balls

Probable Solution: Inflate the points.

Imagine a ball B(p, ε) of some radius ε around all p ∈ P.

Such that Pε :=
⋃
p∈P

(B(p, ε)) ⊃ X .

Problem, how to find the right ε!.
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Union of Balls

Bigger problem, There might not be one right ε.

Solution: Compute homology at all scales, i.e. Persistent Homology
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Persistent Homology
We keep track of the birth and the death of cycles.
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Simplicial Complex

To perform computation, transform continuous to discrete space.

Union of balls ∼ Čech complex.

The discrete space is known as Simplicial Complex.

Simplicial Complex : Nicely glued edges, triangle, tetrahedron...
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Čech and Rips Complex

Rips Complex: An example of flag complex.

Čech and Rips complex are interleaved.

R(P, ε) ⊆ C(P,
√

2ε) ⊆ R(P,
√

2ε)
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Filtration

As radius increases, the čech complex grows with inclusion of new simplices.

Filtration : A sequence of nested simplicial complexes.

The filtration value of a simplex is the radius at which appears first.
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Persistent Homology of a filtration

Barcode of a filtration.

Small bars → Noise, Big bars → Real features.
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Negative Simplex

Negative Simplex: A simplex which destroys a homology group.

A negative k-simplex destroys a (k − 1)-cycle.
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Positive Simplex

Positive Simplex: A simplex which creates a homology group.

A positive k-simplex creates a k-cycle.

Persistence diagram: Pairings of positive and negative simplices.
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Boundary Matrix
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Persistence Algorithm

Run time complexity: O(n3); n = filtration size.
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Simple Example
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Stability

A hallmark result in persistence theory.

Stablity theorem: Two close(similiar) point sets will have close(similar)
barcodes/persistence diagrams.

Proven by David Cohen-Steiner et. al.
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Motivation

Computing persistent homology (PH) has O(nω) time complexity, n is the filtration
size, ω ≤ 2.4.

For massive and high-dimensional datasets, n may be very large (of order of billions).

Rips complex : Widely used, Easy to compute, however n grows exponentially with
dimension.

Our work reduces the size the filtration by order of magnitude 3-4 using Strong
Collapses and Edge Collapse.

Major Advantages:
I Reduction is done on the 1-skeleton =⇒ Extremely Fast and Memory Efficient.
I We can compute the exact PH, and a substantially faster approximate PH at a very

minimal cost.
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Strong Collapse

v v ′

Definition

Dominated vertex: If the link lkK (v) is a simplicial cone. i.e lkK (v) = v ′L.

Vertex v is said to be dominated by v ′.

Definition

An elementary strong collapse consists of removal of a dominated vertex v from K .

K ↘↘e {K \ v}

.

v ′
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A series of elementary strong collapses from K to L (subcomplex) is called a strong
collapse.

K ↘↘ L

.

K and L are said to have the same strong homotopy type.

Theorem

Strong homotopy type =⇒ Simple homotopy type =⇒ Homotopy type.

Lemma

v is dominated by v ′ iff all the maximal simplices of K that contain v also contain v ′.

Retraction map: The vertex map r : K → K \ v defined as: r(w) = w if w 6= v and
r(v) = v ′.

Minimal complex : A complex without any dominated vertex.

Core: K0 is a core of K , if K ↘↘ K0 and K0 is a minimal complex.

Every simplicial complex has a unique core upto isomorphism.
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Strong collapse of a Flag Complex

Open neighborhood NG (v) of v in G is defined as NG (v) := {u ∈ G | [uv ] ∈ E}.
The closed neighborhood NG [v ] := NG (v) ∪ {v}.

Lemma

Let K be a flag complex. A vertex v ∈ K is dominated by v ′ if and only if
NG [v ] ⊆ NG [v ′].

Lemma

Core of a flag complex is a flag complex.

=⇒ The skeleton of the core can computed using only the graph G of K .
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Dominated Edge

Definition

Dominated edge: If the link lkK (e) is a simplicial cone. i.e lkK (e) = v ′L.

Edge e is said to be dominated by v ′.

An elementary edge-collapse consists of removal of a dominated edge e from K .

K ↘↘e {K \ e}

.

Lemma

Let K be a flag complex. A vertex e ∈ K is dominated by v ′ if and only if
NG [e] ⊆ NG [v ′].

Lemma

1-core of a flag complex is a flag complex.

=⇒ The skeleton of the core can computed using only the graph G of K .
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Preprocessing Flow

Objective : To compute the PD of a filtration of a flag complex (flag filtration).

Strong
Collapse

K1 ↪→ K2 ↪→ K3 ↪→ · · · ↪→ Kn

Strong
Expand

K c
1

f c1−→ K c
2

f c2−→ K c
3

f c3−→ · · ·
f c(n−1)−−−−→ K c

n

Compute
PD

K̂1 ↪→ K̂2 ↪→ K̂3 ↪→ · · · ↪→ K̂n

Filtration
(Flag)

Tower (Flag)
Filtration

(Flag)
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Edge collapse flow

Edge
Collapse

K1 ↪→ K2 ↪→ K3 ↪→ · · · ↪→ Kn

Compute
PD

K̂1 ↪→ K̂2 ↪→ K̂3 ↪→ · · · ↪→ K̂n

Filtration
(Flag)

Filtration
(Flag)
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Experiments

VertexCollapser +PD(Gudhi)

Data Pnt
VertexCollapser +PD(Gudhi)

dim Pre-Time Tot-Time Step(btl-dist) Snaps

netw-sc 379 ∞ 7.28 7.38 0.02 263

” ” ∞ 13.93 14.03 0.01 531

” ” ∞ 366.46 366.56 0 8420

senate 103 ∞ 2.53 2.54 0.001 403

” ” ∞ 15.96 15.98 0 2728

Ripser.

Data Pnt Threshold
Val Val Val

dim Time dim Time dim Time

netw-sc 379 5.5 4 25.3 5 231.2 6 ∞
senate 103 0.415 3 0.52 4 5.9 5 52.3

” ” ” 6 406.8 7 ∞
eleg 297 0.3 3 8.9 4 217 5 ∞
HIV 1088 1050 2 31.35 3 ∞
torus 2000 1.5 2 193 3 ∞

Table: Time is the total time (in seconds) taken by Ripser. ∞ means that the experiment
ran longer than 12 hours or crashed due to memory overload.

1 (DataShape INRIA, Sophia-Antipolis, France) Topological Data Analysis, Basics and Computation February 10, 2020 38 / 40



Experiments

EdgeCollapser +PD(Gudhi)

Data Pnt Thrsld
EdgeCollapser +PD

Edge(I)/Edge(C) Size/Dim dim Pre-Time Tot-Time

netw-sc 379 5.5 8.4K/417 1K/6 ∞ 0.62 0.73

senate 103 0.415 2.7K/234 663/4 ∞ 0.21 0.24

eleg 297 0.3 9.8K/562 1.8K/6 ∞ 1.6 1.7

HIV 1088 1050 182K/6.9K 86.9M/? 6 491 2789

torus 2000 1.5 428K/14K 44K/3 ∞ 288 289

Table: Time (in seconds) taken by Edge-Collapser and total time (in seconds) including PD
computation (Tot-Time).

VertexCollapser +PD(Gudhi)

Data Pnt Thrsld
VertexCollapser +PD

Size/Dim dim Pre-Time Tot-Time Step Snaps

netw-sc 379 5.5 175/3 ∞ 366.46 366.56 0 8420

senate 103 0.415 417/4 ∞ 15.96 15.98 0 2728

eleg 297 0.3 835K/16 ∞ 518.36 540.40 0 9850

HIV 1088 1050 127.3M/? 4 660 3,955 4 184

torus 2000 1.5 4 ∞* ∞ 0 428K
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Thank You!
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