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What is Topology?

@ Topology ~ Qualitative Geometry.

@ Geometry is about quantities like, Distances and Angles.
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What is Topology?

@ Topology ~ Qualitative Geometry.

@ Geometry is about quantities like, Distances and Angles.
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@ Different geometrically, same topologically.
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Topology

@ Topology is the study of continuous deformations (rubber sheet geometry).
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Topology

@ Topology is the study of continuous deformations (rubber sheet geometry).

@ Allowed: Stretching and Shrinking.
o Not Allowed : Cutting and Gluing.

1 (DataShape INRIA, Sophia-Antipolis, France) Topological Data Analysis, Basics and Computation



Different topological spaces

@ What are the things Topologists can differentiate?
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Different topological spaces

@ What are the things Topologists can differentiate?

@ Above two graphs are topologically different.
o Different number of components (therefore different connectivity).

@ More formally: They have different zero-dimensional Homology, Ho().
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The idea of Homology

o Different number of cycles (1-dim-holes).
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The idea of Homology

o Different number of cycles (1-dim-holes).

o Different one-dimensional Homology, Hi()
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The idea of Homology

o Different number of cycles (1-dim-holes).

o Different one-dimensional Homology, Hi()
@ 1-dim Cycle, 2-dim Hole.
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The idea of Homology

o Different number of cycles (1-dim-holes).

o Different one-dimensional Homology, Hi()
@ 1-dim Cycle, 2-dim Hole.

@ Hi()s are vector spaces, Betti numbers 5, = Rank(H())

1 (DataShape INRIA, Sophia-Antipolis, France) Topological Data Analysis, Basics and Computation February 10, 2020 6 /40



Homology of Sphere and Torus

o Different number of cycles (1-dim-holes)
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Homology of Sphere and Torus

o Different number of cycles (1-dim-holes).

@ Sphere: Bo=1,681=0,62=1, Bk =0for k>2
@ Torus: Bo=1,51=2,62=1, Bk =0 for k >2

@ Betti numbers Sxs could be used to distinguish topological spaces.
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Data

@ Data could be financial, biological, material...

e Visualized as point cloud in RY

@ Task: Analyze it topologically.
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It’s not all new

@ Clustering.

-

@ Topologically: Connected Component; Compute the 0-th homology group or So
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It’s not all new

@ Clustering.

2

@ Topologically: Connected Component; Compute the 0-th homology group or So
@ Regression. Hypothesis: Linear shape; Compute the line that fits the best.
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The new approach

@ Hypothesis: Data P is a finite sample of some underlying topological space X.

@ Goal: To infer the homology groups or betti numbers of X.
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The new approach

@ Hypothesis: Data P is a finite sample of some underlying topological space X.

@ Goal: To infer the homology groups or betti numbers of X.
@ Problem P # X, P is discrete, finite, X could be continuous.
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Union of Balls

@ Probable Solution: Inflate the points.
@ Imagine a ball B(p, €) of some radius € around all p € P.

@ Such that P¢:= J (B(p,€)) D X.
peEP

O
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Union of Balls

@ Probable Solution: Inflate the points.

@ Imagine a ball B(p, €) of some radius € around all p € P.

@ Such that P := |J (B(p,¢€)) D X.
peEP

@ Problem, how to find the right €!.

1 (DataShape INRIA, Sophia-Antipolis, France) Topological Data Analysis, Basics and Computation



Union of Balls

@ Bigger problem, There might not be one right e.

At no scale, can the union of balls determine
the two loops simultaneously.

@ Solution: Compute homology at all scales, i.e. Persistent Homology
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Persistent Homology
@ We keep track of the birth and the death of cycles.

Persistence barcade
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Persistence diagram
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Simplicial Complex

@ To perform computation, transform continuous to discrete space.

z

@ Union of balls ~ Cech complex.
@ The discrete space is known as Simplicial Complex.

@ Simplicial Complex : Nicely glued edges, triangle, tetrahedron...
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Cech and Rips Complex

@ Rips Complex: An example of flag complex.

o Cech and Rips complex are interleaved.

R(P,€) C C(P,v2¢) C R(P,V/2¢)
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Filtration

@ As radius increases, the &ech complex grows with inclusion of new simplices.

o Filtration : A sequence of nested simplicial complexes.

@ The filtration value of a simplex is the radius at which appears first.
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Persistent Homology of a filtration

@ Barcode of a filtration.

@ Small bars — Noise, Big bars — Real features.
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Negative Simplex

@ Negative Simplex: A simplex which destroys a homology group.

@ A negative k-simplex destroys a (k — 1)-cycle.
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Positive Simplex

@ Positive Simplex: A simplex which creates a homology group.

@ A positive k-simplex creates a k-cycle.

@ Persistence diagram: Pairings of positive and negative simplices.
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Boundary Matrix

6 3 > oo oofi]rol G
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Persistence Algorithm

Algorithm 1 Reduction Algorithm

1: procedure REDUCE(d) > 0 is the boundary matrix.
2: R=o09;

3 for j=1tom do

4 while there exists j/ < j with low(j") = low(j) do

5 add column j to column j > mod 2 operation.
6: end while

7 end for

8: end procedure > Return R

@ Run time complexity: O(n®); n = filtration size.
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Simple Example
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Stability

@ A hallmark result in persistence theory.

@ Stablity theorem: Two close(similiar) point sets will have close(similar)
barcodes/persistence diagrams.
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Birth
@ Proven by David Cohen-Steiner et. al
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Motivation

@ Computing persistent homology (PH) has O(n“) time complexity, n is the filtration
size, w < 2.4.

@ For massive and high-dimensional datasets, n may be very large (of order of billions).

@ Rips complex : Widely used, Easy to compute, however n grows exponentially with
dimension.

@ Our work reduces the size the filtration by order of magnitude 3-4 using Strong
Collapses and Edge Collapse.
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Motivation

@ Computing persistent homology (PH) has O(n“) time complexity, n is the filtration
size, w < 2.4.

@ For massive and high-dimensional datasets, n may be very large (of order of billions).

@ Rips complex : Widely used, Easy to compute, however n grows exponentially with
dimension.

@ Our work reduces the size the filtration by order of magnitude 3-4 using Strong
Collapses and Edge Collapse.

@ Major Advantages:

> Reduction is done on the 1-skeleton = Extremely Fast and Memory Efficient.
> We can compute the exact PH, and a substantially faster approximate PH at a very
minimal cost.
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Strong Collapse

Definition J

Dominated vertex: If the link lkx(v) is a simplicial cone. i.e lkx(v) = v'L.

@ Vertex v is said to be dominated by v'.
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Strong Collapse

Definition J

Dominated vertex: If the link lkx(v) is a simplicial cone. i.e lkx(v) = v'L.

@ Vertex v is said to be dominated by v'.

Definition

An elementary strong collapse consists of removal of a dominated vertex v from K.

KNS {K\ v}

/
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@ A series of elementary strong collapses from K to L (subcomplex) is called a strong
collapse.

K N\\\ L

@ K and L are said to have the same strong homotopy type.

Theorem
Strong homotopy type —> Simple homotopy type —> Homotopy type. J

1 (DataShape INRIA, Sophia-Antipolis, France) Topological Data Analysis, Basics and Computation February 10, 2020 30 / 40



@ A series of elementary strong collapses from K to L (subcomplex) is called a strong
collapse.

K N\\\ L

@ K and L are said to have the same strong homotopy type.
Theorem

Strong homotopy type —> Simple homotopy type —> Homotopy type. J

Lemma

v is dominated by v’ iff all the maximal simplices of K that contain v also contain v'. J
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@ A series of elementary strong collapses from K to L (subcomplex) is called a strong
collapse.

K N\\\ L

@ K and L are said to have the same strong homotopy type.

Theorem
Strong homotopy type —> Simple homotopy type —> Homotopy type. J

Lemma J

v is dominated by v’ iff all the maximal simplices of K that contain v also contain v'.

@ Retraction map: The vertex map r: K — K \ v defined as: r(w) = w if w # v and
r(v) =v'.

@ Minimal complex : A complex without any dominated vertex.

@ Core: Kpis a core of K, if K \\\\\ Ko and Kj is a minimal complex.

@ Every simplicial complex has a unique core upto isomorphism.
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Strong collapse of a Flag Complex

@ Open neighborhood Ng(v) of v in G is defined as Ng(v) := {u € G| [uv] € E}.
@ The closed neighborhood Ng[v] := Ng(v) U {v}.

1 (DataShape INRIA, Sophia-Antipolis, France) Topological Data Analysis, Basics and Computation February 10, 2020 32 /40



Strong collapse of a Flag Complex

@ Open neighborhood Ng(v) of v in G is defined as Ng(v) := {u € G| [uv] € E}.
@ The closed neighborhood Ng[v] := Ng(v) U {v}.

Lemma

Let K be a flag complex. A vertex v € K is dominated by v’ if and only if
N(;[V] g N(;[Vl].
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Strong collapse of a Flag Complex

@ Open neighborhood Ng(v) of v in G is defined as Ng(v) := {u € G| [uv] € E}.
@ The closed neighborhood Ng[v] := Ng(v) U {v}.
Lemma

Let K be a flag complex. A vertex v € K is dominated by v’ if and only if
N(;[V] g N(;[Vl].

Lemma

Core of a flag complex is a flag complex.
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Strong collapse of a Flag Complex

@ Open neighborhood Ng(v) of v in G is defined as Ng(v) := {u € G| [uv] € E}.
@ The closed neighborhood Ng[v] := Ng(v) U {v}.
Lemma

Let K be a flag complex. A vertex v € K is dominated by v’ if and only if
N(;[V] g N(;[Vl].

Lemma

Core of a flag complex is a flag complex.

@ = The skeleton of the core can computed using only the graph G of K .
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Dominated Edge

Definition J

Dominated edge: If the link lkx(e) is a simplicial cone. i.e Tkx(e) = v'L.

@ Edge e is said to be dominated by v'.
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Dominated Edge

Definition J

Dominated edge: If the link lkx(e) is a simplicial cone. i.e Tkx(e) = v'L.

@ Edge e is said to be dominated by v'.

@ An elementary edge-collapse consists of removal of a dominated edge e from K.

KNNS K\ e}

Lemma

Let K be a flag complex. A vertex e € K is dominated by v’ if and only if
Ng[e] C NG[V/].
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Dominated Edge

Definition J

Dominated edge: If the link lkx(e) is a simplicial cone. i.e Tkx(e) = v'L.

@ Edge e is said to be dominated by v'.

@ An elementary edge-collapse consists of removal of a dominated edge e from K.

KNNS K\ e}

Lemma

Let K be a flag complex. A vertex e € K is dominated by v’ if and only if
Ng[e] C NG[V/].

Lemma

1-core of a flag complex is a flag complex.
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Dominated Edge

Definition J

Dominated edge: If the link lkx(e) is a simplicial cone. i.e Tkx(e) = v'L.

@ Edge e is said to be dominated by v'.

@ An elementary edge-collapse consists of removal of a dominated edge e from K.

KNNS K\ e}

Lemma

Let K be a flag complex. A vertex e € K is dominated by v’ if and only if
Ng[e] C NG[V/].

Lemma

1-core of a flag complex is a flag complex.

@ —> The skeleton of the core can computed using only the graph G of K .
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Preprocessing Flow

Objective : To compute the PD of a filtration of a flag complex (flag filtration).

— Ky

Ki— Ko =& K3 — ---

Strong
Collapse

Tower (Flag)
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Edge collapse flow

Ki— Ko =& K3 — -+ — K,

Edge
Collapse

Ko Koo Kz oo o Ky

Compute
PD

Filtration
(Flag)
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Experiments

o VertexCollapser +PD(Gudhi)

Dot Pt VertexCollapser +PD(Gudhi)
dim Pre-Time Tot-Time Step(btl-dist) Snaps
netw-sc 379 oo 7.28 7.38 0.02 263
i i ) 13.93 14.03 0.01 531
B B oo 366.46 366.56 0 8420
senate 103 oo 2.53 2.54 0.001 403
B B oo 15.96 15.98 0 2728
@ Ripser.
Val Val Val
Data Pt Threshold dim Time dim Time dim Time
netw-sc 379 55 4 25.3 5 231.2 6 =)
senate 103 0.415 3 0.52 4 5.9 5 52.3
" i " 6 406.8 7 =)
eleg 297 0.3 3 8.9 4 217 5 oo
HIV 1088 1050 2 31.35 3 oo
torus 2000 15 2 193 3 oo

Table: Time is the total time (in seconds) taken by Ripser. oo means that the experiment
ran longer than 12 hours or crashed due to memory overload.

1 (DataShape INRIA, Sophia-Antipolis, France) Topological Data Analysis, Basics and Computation February 10, 2020 38 / 40



Experiments

@ EdgeCollapser +PD(Gudhi)

EdgeCollapser +PD

Data Prt | Thisld e e T S i T i | PreTime | Tot T
netw-sc 379 5.5 8.4K/417 1K/6 = 0.62 0.73
senate | 103 | 0415 2.7K/234 563/4 ) 021 0.24
eleg 297 03 9.8K/562 T8K/6 | oo 6 17
AV 088 | 1050 182K /6.9K B6.0M/7 G 91 3789
Torus | 2000 5 928K/ 14K WaK/3 oo 268 289

Table: Time (in seconds) taken by Edge-Collapser and total time (in seconds) including PD
computation (Tot-Time).

o VertexCollapser +PD(Gudhi)

VertexCollapser +PD
Data Pnt Thrsld Size/Dim dim Pre-Time 5 Tot-Time Step Snaps
netw-sc 379 5.5 175/3 =) 366.46 366.56 0 8420
senate 103 0.415 417/4 o 15.96 15.98 0 2728
eleg 297 0.3 835K/16 = 518.36 540.40 0 9850
HIV 1088 1050 127.3M/? 4 660 3,955 4 184
torus 2000 15 4 oo ¥ = 0 428K
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