The first references of gradient boosting are

Mason, Baxter, Bartlett and Frean, “Boosting algorithms as gradient descent”, Proceeding NIPS, 1999
We want to find $f^* = \arg\min_f \sum_{i=1}^{n} (y_i - f(x_i))^2$
Idea

- To approximate \(f^* = \arg \min_f \sum_{i=1}^{n} (y_i - f(x_i))^2 \) we use the idea of sequentially improve an initial, simple \(f_0 \) adding other simple estimators.

- For instance, we could use Decision Trees with one node or very simple neural networks.

- After the initial estimator \(f_0 \), we compute the residual \(y_i - f_0(x_i) \) and find \(f_1 \) such that

\[
 f_1 = \arg \min_h \sum_{i=1}^{n} (y_i - f_0(x_i) - h(x_i))^2
\]

- Repeat until the total error is small. The final estimator will be given by

\[
 f^*(x) \approx f_0(x) + \sum_{i=1}^{k} \nu f_i(x),
\]

where \(\nu \) is a learning rate.
Idea

Prediction (Iteration 2)

Residuals vs. x (Iteration 2)

Prediction (Iteration 21)

Residuals vs. x (Iteration 21)
Let’s formalize the ideas we have just seen:

- \mathbb{X} denotes the input space and \mathbb{Y}, the output space

- \mathbb{X} is the random input and \mathbb{Y}, the random output, both defined in a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$

- their joint probability density by p; $p_\mathbb{X}$ and $p_\mathbb{Y}$ denote the marginal distributions

- $L : \mathbb{Y} \times \mathbb{Y} \rightarrow \mathbb{R}$ is a point-to-point loss function and:

$$
\mathcal{L}(f) = \mathbb{E}_{\mathbb{X}, \mathbb{Y}}[L(\mathbb{Y}, f(\mathbb{X}))] = \int L(y, f(x))p(x, y)dxdy,
$$

for $f : \mathbb{X} \rightarrow \mathbb{Y}$
Problem

- We are considering
 \[
 f^* = \arg \min_{f \in \text{Lin}(S)} \mathcal{L}(f)
 \]

- \(S \) is the space of the so-called weak learners (or boosts), which are functions from \(\mathbb{X} \) to \(\mathbb{Y} \) and
 \[
 \text{Lin}(S) = \left\{ \sum_{j=1}^{m} w_j f_j ; f_j \in S, \ w_j \in \mathbb{R}, \ m \in \mathbb{N} \right\}
 \]

- Given \(f \in \text{Lin}(S) \), we want to choose \(\Delta f^* \in S \) such that we decrease the loss function \(\mathcal{L} \) as much as we can

- Clearly the desired direction must be the negative of the gradient of \(\mathcal{L} \) at \(f \)
Reminder: if \(\mathcal{L} : \mathbb{R}^n \rightarrow \mathbb{R} \), then the directional derivative of \(\mathcal{L} \) at \(f \) in the direction of \(\Delta f \) can be written \(D\mathcal{L}(f)(\Delta f) = \nabla \mathcal{L}(f) \cdot \Delta f \), where \(\nabla \mathcal{L} = (\partial_1 \mathcal{L}, \ldots, \partial_n \mathcal{L}) \) and \(\cdot \) is the inner product in \(\mathbb{R}^n \).

\(\mathcal{L} \) decreases the most in the direction of \(\Delta f = -\nabla \mathcal{L}(f) \).
Gradient in Infinite-Dimensional

- Our setting is infinite-dimensional: the directional derivative of \mathcal{L} at f in the direction of Δf is defined as:

$$D\mathcal{L}(f)(\Delta f) = \lim_{\varepsilon \to 0} \frac{\mathcal{L}(f + \varepsilon \Delta f) - \mathcal{L}(f)}{\varepsilon}$$

- Under mild assumptions, the gradient of \mathcal{L}, denoted by $\nabla \mathcal{L}(f)$ is a function in $L^2(\mathbb{X}, p_X)$ that satisfies, for all Δf,

$$D\mathcal{L}(f)(\Delta f) = \int_{\mathbb{X}} \nabla \mathcal{L}(f)(x) \Delta f(x)p_X(x) dx = \langle \nabla \mathcal{L}(f), \Delta f \rangle$$

- Hence, in some sense,

$$\nabla \mathcal{L}(f)(x_0)p_X(x_0) = D\mathcal{L}(f)(\delta_{x_0}) = \lim_{\varepsilon \to 0} \frac{\mathcal{L}(f + \varepsilon \delta_{x_0}) - \mathcal{L}(f)}{\varepsilon}$$
Gradient

• What is the gradient of L in our infinite-dimensional case?

• Notice that (assuming certain regularity)

$$DL(f)(\Delta f) = \lim_{\varepsilon \to 0} \frac{L(f + \varepsilon \Delta f) - L(f)}{\varepsilon}$$

$$= \mathbb{E} \left[\lim_{\varepsilon \to 0} \frac{L(Y, f(X) + \varepsilon \Delta f(X)) - L(Y, f(X))}{\varepsilon} \right]$$

$$= \mathbb{E}_{X,Y} \left[\partial_2 L(Y, f(X)) \Delta f(X) \right],$$

where $\partial_2 L$ denotes the derivative with respect to the second argument of L. Then

$$DL(f)(\Delta f) = \int_X \mathbb{E}_{Y|X}[\partial_2 L(Y, f(X)) \Delta f(X) \mid X = x] p_X(x) dx$$

$$= \int_X \left[\mathbb{E}_{Y|X}[\partial_2 L(Y, f(x)) \mid X = x] \Delta f(x) p_X(x) \right] dx = \langle \nabla L(f), \Delta f \rangle$$

$$= \nabla L(f)(x)$$
Algorithm

- Hence $\nabla \mathcal{L}(f)(x) = \mathbb{E}_{Y|X}[\partial_2 L(Y, f(x)) | X = x]$

- Notice that $\nabla \mathcal{L}(f)$, viewed as a function on \mathbb{X}, might not belong to \mathcal{S}

- Therefore, we should choose $\Delta f^* \in \mathcal{S}$ as similar as possible to $\nabla \mathcal{L}(f)$, i.e. choose $\Delta f^* \in \mathcal{S}$ that maximizes

$$-\langle \nabla \mathcal{L}(f), \Delta f \rangle = -D\mathcal{L}(f)(\Delta f) = -\int_{\mathbb{X}} \nabla \mathcal{L}(f)(x)\Delta f(x)p_X(x)dx$$

- We then improve f by considering $f + \nu \Delta f^*$, where ν is a learning rate

- The Gradient Boosting algorithm is the iteration of the steps above starting from a given $f_0 \in \mathcal{S}$ and stopping when $-\langle \nabla \mathcal{L}(f_m), \Delta f \rangle \leq 0$ for all $\Delta f \in \mathcal{S}$
Convergence

Let \((f_m)_{m \in \mathbb{N}}\) be a sequence generated by the Gradient boosting algorithm

Assumption

- \(\mathcal{L} : \text{Lin}(S) \rightarrow \mathbb{R}\) is convex, lower bounded and Lipschitz differentiable loss functional, i.e. there exists \(B\) and \(L\) positive numbers such that \(\mathcal{L}(f) \geq B\) and \(\|\nabla \mathcal{L}(f) - \nabla \mathcal{L}(g)\| \leq L\|f - g\|\), for any \(f, g \in \text{Lin}(S)\)

- \(f \in S \Rightarrow -f \in S\) and the algorithm always finds the function \(\Delta f_m \in S\) that maximizes \(-\langle \nabla \mathcal{L}(f_{m-1}), \Delta f \rangle\)

Theorem

If the assumptions above are satisfied, then

\[
\lim_{m \rightarrow +\infty} \sup_{\Delta f \in S} -\langle \nabla \mathcal{L}(f_m), \Delta f \rangle = 0\]

and \(\mathcal{L}(h) = \inf_{f \in \text{Lin}(S)} \mathcal{L}(f)\),

for any accumulation point \(h\) of \((f_m)_{m \in \mathbb{N}}\)
Finite Data

Given a finite sample \(S = \{ (x_1, y_1), \ldots, (x_N, y_N) \} \) from \((X, Y)\), we use the following approximation

\[
\mathcal{L}(f) \approx \frac{1}{N} \sum_{j=1}^{N} L(y_i, f(x_i)),
\]

\[
\nabla \mathcal{L}(f)(x_i) \approx \partial_2 L(y_i, f(x_i)),
\]

\[
\langle \nabla \mathcal{L}(f), \Delta f \rangle \approx \frac{1}{N} \sum_{i=1}^{N} \partial_2 L(y_i, f(x_i)) \Delta f(x_i)
\]

What is an Inverse Problem?

- To understand the type of problems we will try to solve, consider the following simple example

\[-(gu_x)_x = f, \text{ for } x \in (0, 1),\]

\[u(0) = a_0 \text{ and } u(1) = a_1,\]

where \(f, a_0, a_1\) are fixed and known.

- The direct problem is, knowing \(g\), finding \(u\): various numerical methods for that, e.g. finite difference

- The inverse problem is, knowing \(u\), finding \(g\)

- What exactly do we mean by “knowing \(u\)”? Usually, we know \(u\) in a mesh of its domain and there might exist noise in the observation
Inverse Problem

- Let $G \subset L^2(\mathbb{X}, p_X)$ be a space of functions and consider an operator $A : G \times \mathbb{X} \rightarrow \mathbb{Y}$

- The operator A denotes the direct problem; in the previous example $A(g, x) = u(x)$

- We are interested in solving the following inverse problem related to A: given $x \in \mathbb{X}$ and $y \in \mathbb{Y}$, find $g \in G$ such that $A(g, x) = y$ in the sense of minimizing

$$C(g) = \mathcal{L}(A(g, \cdot)) = \mathbb{E}_{\mathcal{X}, \mathcal{Y}}[L(Y, A(g, X))]$$

- There are various ways of solving this. Here we will modify the Gradient Boosting technique to fit the particularities of this problem
Gradient of C

- We need to compute ∇C.

- For this, we assume the exists the gradient $\nabla A(g, \cdot): \mathbb{X} \to \mathbb{R}$ in the sense:

$$DA(g, X)(\Delta g) = \int_X \nabla A(g, X)(x) \Delta g(x) p_X(x) dx$$

- By the chain rule:

$$DC(g)(\Delta g) = \mathbb{E}_{X, Y}[\partial^2 L(Y, A(g, X)) DA(g, X)(\Delta g)]$$

- Using the definition of $DA(g, X)(\Delta g)$

$$DC(g)(\Delta g) = \int_X \mathbb{E}_{X, Y}[\partial^2 L(Y, A(g, X)) \nabla A(g, X)(x)] \Delta g(x) p_X(x) dx$$

- This implies that

$$\nabla C(g)(x) = \mathbb{E}_{X, Y}[\partial^2 L(Y, A(g, X)) \nabla A(g, X)(x)]$$
• Notice the difference of gradients:

\[\nabla \mathcal{L}(F)(x) = \mathbb{E}_{Y \mid X}[\partial_2 L(Y, F(x)) \mid X = x] \]

\[\nabla C(g)(x) = \mathbb{E}_{X, Y}[\partial_2 L(Y, A(g, X))\nabla A(g, X)(x)] \]

• The usual gradient boosting can be retrieved by assuming

\[A(g, x) = g(x) \]

• In this case, \(\nabla A(g, X)(x) = 1_{\{X=x\}} \), which implies:

\[\nabla C(g)(x) = \mathbb{E}_{X, Y}[\partial_2 L(Y, g(X))1_{\{X=x\}}] \]

\[\propto \mathbb{E}_{Y \mid X}[\partial_2 L(Y, g(x)) \mid X = x] = \nabla \mathcal{L}(g)(x) \]
• As before, $\nabla C(g)$, viewed as a function on \mathbb{X}, might not belong to S
• Therefore, we should choose $\Delta g^* \in S$ as similar as possible to $\nabla C(g)$, i.e. choose $\Delta g^* \in S$ that maximizes

$$-\langle \nabla C(g), \Delta g \rangle = -DC(g)(\Delta g) = -\int_X \nabla C(g)(x) \Delta g(x) p_X(x) dx$$

• We then improve g by considering $g + \nu \Delta g^*$, where ν is a learning rate
• The Gradient Boosting for inverse algorithm is the iteration of the steps above starting from a given $g_0 \in S$ and stopping when

$$-\langle \nabla C(g_m), \Delta g \rangle \leq 0 \text{ for all } g \in S$$
Let \((g_m)_{m \in \mathbb{N}}\) be a sequence generated by the Gradient boosting algorithm.

Theorem

If \(C\) is convex, lower bounded and Lipschitz differentiable, \(S\) is symmetric, the algorithm always finds the function \(\Delta g_m \in S\) that maximizes

\[-\langle \nabla C(g_{m-1}), \Delta g \rangle,\]

then

\[
\lim_{m \to +\infty} \sup_{\Delta g \in S} -\langle \nabla C(g_m), \Delta g \rangle = 0 \quad \text{and} \quad C(h) = \inf_{g \in \text{Lin}(S)} C(g),
\]

for any accumulation point \(h\) of \((g_m)_{m \in \mathbb{N}}\).
Finite Data

Given a finite sample \(S = \{(x_1, y_1), \ldots, (x_N, y_N)\} \) from \((X, Y)\), we use the following approximation

\[
C(g) \approx \frac{1}{N} \sum_{j=1}^{n} L(y_j, A(g, x_j)),
\]

\[
\nabla C(g)(x_i) \approx \frac{1}{N} \sum_{j=1}^{n} \partial_2 L(y_j, A(g, x_j)) \nabla A(g, x_j)(x_i),
\]

\[
\langle \nabla C(g), \Delta g \rangle \approx \frac{1}{N^2} \sum_{i,j=1}^{n} \partial_2 L(y_j, A(g, x_j)) \nabla A(g, x_j)(x_i) \Delta g(x_i)
\]

Moreover, the gradient \(\nabla A(g, x_j)(x_i) \) could be computed using the limit:

\[
\nabla A(g, x_j)(x_i) = \frac{1}{p_X(x_i)} \lim_{\varepsilon \to 0} \frac{A(g + \varepsilon \delta_{x_i}, x_j) - A(g, x_j)}{\varepsilon}
\]
One could improve the estimation by considering

\[\rho_m = \arg\min_\rho \frac{1}{N} \sum_{j=1}^N L(y_j, A(g_{m-1} + \rho \Delta g_m, x_j)) \]

we then update \(g_m = g_{m-1} + \nu \rho_m \Delta g_m \)
Example - PDE

$A(g, \cdot)$ is the solution u of the PDE

$$
\begin{align*}
-(gu_x)_x &= f, \text{ for } x \in (0, 1), \\
u(0) &= a_0 \text{ and } u(1) = a_1,
\end{align*}
$$

where f, a_0, a_1 are fixed and known. We consider the cases:

- $g(x) = 1 + \phi(x)$, with $\phi(x) = 1, x, x^2, \sin(2\pi x)$
- $u(x) = \sin^2(2\pi x)$ (and f accordingly), $a_0 = a_1 = 0$
- Compute $A(g, \cdot)$ using finite difference in a grid x with $\Delta x = 0.01$
- Learning rate $\nu = 0.1$, boosts were a neural network with 1 hidden layer with 5 neurons and activation \tanh
- Noisy data: $u^\delta(x) = u(x) + \delta N(0, 1)$
Example - PDE

\[g \equiv 1 \]

\[g(x) = 1 + x \]

\[g(x) = 1 + x^2 \]

\[g(x) = 1 + \sin(2\pi x) \]
Example - PDE

\[g \equiv 1 \]

\[g(x) = 1 + x \]

\[g(x) = 1 + x^2 \]

\[g(x) = 1 + \sin(2\pi x) \]
Example - PDE

\[g \equiv 1 \]

\[g(x) = 1 + x \]

\[g(x) = 1 + x^2 \]

\[g(x) = 1 + \sin(2\pi x) \]
Example - PDE - Noisy Example

\[g \equiv 1 \]

\[g(x) = 1 + x \]

\[g(x) = 1 + x^2 \]

\[g(x) = 1 + \sin(2\pi x) \]
Example - PDE - Noisy Example

\[g \equiv 1 \]

\[g(x) = 1 + x \]

\[g(x) = 1 + x^2 \]

\[g(x) = 1 + \sin(2\pi x) \]
Example - PDE - Noisy Example

\[g \equiv 1 \]

\[g(x) = 1 + x \]

\[g(x) = 1 + x^2 \]

\[g(x) = 1 + \sin(2\pi x) \]
Example - PDE - Discontinuous g

- $g(x) = \begin{cases}
 0.5, & \text{if } x < 0.5, \\
 1.5, & \text{if } x \geq 0.5
\end{cases}$

- $f \equiv 10$, $a_0 = a_1 = 0$

- u computed with finite difference

- Compute $A(g, \cdot)$ using finite difference in a grid x with $\Delta x = 0.01$

- Learning rate $\nu = 0.1$, boosts were a neural network with 1 hidden layer with 5 neurons and activation \tanh

- Noisy data: $u^\delta(x) = u(x) + \delta N(0, 1)$
Example - PDE - Discontinuous case
Future Research

- Improve conditions in the gradient boosting theorem for inverse problem: convexity and Lipschitz differentiability of C might be too strong.
- Add restrictions to the estimator of g: we often know some information about g. e.g. it should be positive, etc.
- Apply the method to more complex problems, e.g. local volatility in Finance
Inverse Problems in Finance
A company wants to ensure its gasoline supply for next month.

How much should be paid today to guarantee the delivery of the agreed amount of gasoline in one month?

This contract is a derivative:

- the date the product will be delivered is the *maturity*
- the agreed price for the product is the *strike*
- the price to enter this contract is the *premium*

There are some well-known types of derivatives:

- Future: contract to buy or sell an asset at the maturity at the strike price
- Options: contract that gives the holder the right, but not the obligation, to buy or sell an asset at the maturity at the strike price
Derivative Contracts

- There are two important types of options: *calls* and *puts*.
- Calls give the holder the option to buy; Puts, the option to sell.
- The payoff of an option is the amount at maturity is called *payoff*.
- S_T is the stock price at maturity and K, the strike. The payoff of:
 - a future is $S_T - K$
 - a call option is $S_T - K$, if $S_T > K$, and 0 otherwise
 - a put option is $K - S_T$, if $S_T < K$, and 0 otherwise.

\[\text{Future } K - S_T \quad \text{Call } (S_T - K)^+ \quad \text{Put } (K - S_T)^+\]
An arbitrage opportunity is a strategy that costs nothing today, it cannot lose money and it has a chance of profit in the future.

Mathematically, the value of this strategy, V_t, satisfies $V_0 = 0$, $\mathbb{P}(V_t \geq 0) = 1$ and $\mathbb{P}(V_t > 0) > 0$.

Notice that $(S_T - K)^+ - (K - S_T)^+ = (S_T - K)$, i.e. Call minus Put equal Future at T.

In a market without arbitrage opportunities, we would expect that this relation is true at any time $t \leq T$. Indeed, this is the Put-Call Parity:

$$C_t(T, K) - P_t(T, K) = F_t(T, K)$$
Black–Scholes Model

Black–Scholes dynamics (under the historical measure):

\[dS_t = \mu S_t dt + \sigma S_t dW_t \]

The parameter \(\mu \) is the rate of return
- This parameter is quite difficult to estimate/calibrate
- But it is not used in the pricing formula

The most important parameter in this model is the volatility, \(\sigma \), assumed constant

Under the risk-neutral measure, the dynamics is given by:

\[dS_t = rS_t dt + \sigma S_t dW_t, \]

where \(r \) is the risk-free interest rate
Black–Scholes Model

• Using Itô’s formula with \(f(x) = \log x \), one might show that

\[
S_t = S_0 e^{\left(r - \frac{\sigma^2}{2} \right)t + \sigma W_t}
\]

• So, \(S_t \) is log-normally distributed

• Using this, there exists a closed-formula for the price of a call with maturity \(T \) and strike \(K \):

\[
C(t, S, T, K, \sigma) = SN(d_1) - Ke^{-r(T-t)}N(d_2),
\]

where

\[
d_1 = \frac{\log(S/K) + (r + \sigma^2/2)(T - t)}{\sigma \sqrt{T - t}},
\]

\[
d_2 = d_1 - \sigma \sqrt{T - t}
\]
The implied volatility of the market price, \(C^M \), of a call with maturity \(T \) and strike \(K \) is implicitly defined by

\[
C_{BS}(t, S, T, K, \hat{\sigma}_t(T, K)) = C^M(T, K)
\]

The implied vol exists (given that \((S - e^{-r(T-t)}K)^+ \leq C^M \leq S\)) and it is unique (since the Vega \(\frac{\partial C_{BS}}{\partial \sigma} \) is strictly positive)

The implied volatility is the language used in the market to quote option prices

“implied volatility is the wrong number to put in the wrong formula to obtain the right price.” (Rebonato)
Implied Volatility - The Smile

- If the Black–Scholes model were the correct market model, then we would expect that

\[\hat{\sigma}_t(T, K_1) = \hat{\sigma}_t(T, K_2) \]

- Until the crash of 87 (Black Monday), this was actually verified in the American Equities market

- Since then, the *smile* is found in all liquid markets

![Graph](image1.png)
SPX - Maturity - 15/01/2016

![Graph](image2.png)
VIX - Maturity - 20/01/2016

![Graph](image3.png)
USDBRL - Maturity - 3M

S&P 500
VIX
USDBRL
Implied Volatility - The Smile

More complex models are needed!

\[dS_t = rS_t dt + \sigma S_t dW_t^S \]

- Time dependent volatility: \(\sigma(t) \)
- Local volatility: \(\sigma(t, S) \)
- Stochastic Volatility (e.g. Heston Model): \(\sqrt{V_t} \)
- Stochastic Local Volatility: \(L(t, S)\sqrt{V_t} \)
Volatility clustering - small moves in prices follow small moves and large moves follow large moves

Heavy tails - distribution of asset returns have heavier tails than the normal distribution (as the Black–Scholes model assumes)

Leverage effect - negative correlation between asset price and volatility (for some markets, mainly equities and index); when price goes down, vol rises

Mean reversion - when volatility rises or falls, it tends to revert to some long-run level
Black–Scholes - First Generalization

In the case where $\hat{\sigma}_t(T, K_1) = \hat{\sigma}_t(T, K_2)$, but $\hat{\sigma}_t(T_1, K) \neq \hat{\sigma}_t(T_2, K)$, the Black–Scholes model can be easily generalized to fit this behavior.

Consider:

$$dS_t = r(t)S_t dt + \sigma(t)S_t dW_t$$

There is still a closed form solution for the price of a call option with strike K and maturity T:

$$C_{BS}(t, S, T, K, \sigma) = SN(\bar{d}_1) - Ke^{-\bar{r}(T-t)}N(\bar{d}_2),$$

where

$$\bar{d}_{1,2} = \frac{\log(S/K) + (\bar{r} + \bar{\sigma}^2/2)(T - t)}{\bar{\sigma}\sqrt{T - t}},$$

$$\bar{r} = \frac{1}{T - t} \int_t^T r(s)ds, \quad \bar{\sigma} = \sqrt{\frac{1}{T - t} \int_t^T \sigma^2(s)ds}$$
Local Volatility

- Let \(\{ C^M(T, K) ; \ T > 0, \ K > 0 \} \) the set of all call option prices available in the market.

- In what follows, we will assume there are a continuum of call option prices available.

- The local volatility dynamics assumes

\[
dS_t = rS_t dt + \sigma_L(t, S_t) S_t dW_t
\]

- The local volatility for the prices \(C^M \) is the function \(\sigma_L \) such that the prices of call options under the model above is equal to prices \(C^M \) observed in the market, i.e. is the function that reprices the market.

- In symbols:

\[
C(T, K) = e^{-rdT} \mathbb{E}[(S_T - K)^+] = C^M(T, K) , \ \forall \ T, K > 0
\]
Local Volatility

Theorem

In the famous paper “Pricing with a smile”, Bruno Dupire proved that the local volatility exists, it is unique and it is given by the formula:

$$\frac{\partial C}{\partial T}(T, K) + rK \frac{\partial C}{\partial K}(T, K) - \frac{1}{2} \sigma_L^2(T, K) K^2 \frac{\partial^2 C}{\partial K^2}(T, K) = 0$$

or

$$\sigma_L^2(T, K) = \frac{\frac{\partial C}{\partial T}(T, K) + rK \frac{\partial C}{\partial K}(T, K)}{\frac{1}{2} K^2 \frac{\partial^2 C}{\partial K^2}(T, K)}$$
Local Volatility

- Many ways to prove the previous theorem.
- One of them is to use the Fokker-Planck equation and the Breeden-Litzenberger formula:
 \[
 \frac{\partial^2 C}{\partial K^2}(t, S, T, K) = e^{-r(T-t)} p(t, S, T, K),
 \]
 where \(p(t, S, T, \cdot) \) is the density of \(S_T \) given that \(S_t = S \).
- This follows from
 \[
 C(t, S, T, K) = e^{-r(T-t)} \int_0^{+\infty} p(t, S, T, x)(x - K)^+ dx
 \]
- As Dupire wrote: “[the Local vol formula] holds only because the intrinsic value of a call happens to be the second integral of a Dirac function. It is very fortunate that the market trades this particular payoff!”
In practice, there are just some finite number of implied vols

However, the formulas we have seen for the Local Volatility requires a continuum of implied vols

This means we may need to interpolate the implied vols from the market

Which must be done in a way that does not introduce arbitrage in the prices
Pros and Cons

Pros:

▶ in theory, perfectly calibrates the market
▶ keeps the market complete (only one dW to be hedged)
▶ it is a simple model to price exotic derivatives (barrier, forward-start, etc) - just use PDE methods or Monte Carlo simulation

Cons:

▶ requires the interpolation of the implied volatility surface
▶ volatility is perfectly correlated with the spot
▶ volatility is not mean-reverting
▶ computation requires numerical differentiation (usually unstable)
▶ it does not capture the correct price of exotic derivatives that depends on the realized volatility (the correlation becomes important)
Exotic Option - Barrier

Price of Barrier Option in Black-Scholes (various vols) and in Local Vol - taken from one of Dupire’s talks
Exotic Option - Vol KO

- It is a call option with European barrier in the realized volatility during the life of the option.
- The payoff can be written as $g(S, RV) = (S - K)^+ 1_{\{RV \leq H\}}$
- The realized vol is usually (meaning contractually) given by

$$RV = \sqrt{\frac{AF}{N} \sum_{i=1}^{N} \left(\log \left(\frac{S_{t_i}}{S_{t_{i-1}}} \right) \right)^2},$$

onde $t_i = (i/N)T$
The Stochastic Local Volatility (SLV) model is a hybrid model that captures important characteristics of both local and stochastic volatility models. It can be mathematically described by the SDEs

\[
\begin{align*}
 dS_t &= rS_t dt + L(t, S_t) \sqrt{V_t} dW_t^S \\
 dV_t &= \alpha(t, V_t) dt + \beta(t, V_t) dW_t^V
\end{align*}
\]

The most important restriction is:

\[
\sigma_L^2(t, S) = \mathbb{E}[L^2(t, S_t) V_t \mid S_t = S] \quad \text{or} \quad L^2(t, S) = \frac{\sigma_L^2(t, S)}{\mathbb{E}[V_t \mid S_t = S]}
\]

Since the joint dynamics of \((S, V)\) depends on \(L\), the equation above is an implicit equation for \(L\).

It is fairly difficult to implement this model.
Thank you!